• Title/Summary/Keyword: pH 전환

Search Result 551, Processing Time 0.027 seconds

Characteristics of Lactose Hydrolysis by Immobilized β-Galactosidase on Chitosan Bead (Chitosan 담체에 고정화된 β-galactosidase에 의한 유당 분해 특성)

  • Kang, Byung-Chul
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.127-133
    • /
    • 2011
  • ${\beta}$-Galactosidase was immobilized on chitosan bead by covalent bonding using glutaraldehyde. The characteristics of the immobilized enzyme were investigated. Maximum immobilization yield of 75% was obtained on chitosan bead. Optimum pH and temperature for the immobilized enzyme was 7.0 and $50^{\circ}C$, respectively. The immobilized enzyme showed a broader range of pH and temperature compared to a free one. A mathematical model for the operation of the immobilized enzyme in a packed-bed reactor was established and solved numerically. Under different inlet lactose concentrations and feed flow rate conditions, lactose conversion was measured in a packed-bed reactor. The experimental results of continuous operation in a packed-bed reactor were compared to theoretic results using Michaelis-Menten kinetics with competitive product inhibition and external mass transfer resistance. The model predicted the experimental data with errors less than 5%. Process optimization of continuous operation in a packed-bed reactor was also conducted. In a recirculation packed-bed operation, conversion of lactose was 97% in 3 hours. In a continuous packed-bed operation, the effect of flow rate and initial lactose concentration was investigated. Increasing flow rates and initial lactose concentration decreased the conversion of substrate.

Enantioselective Hydrolysis for the Precursor of Azole-containing Compounds using Acinetobacter sp. SY-01 Lipase and Increase of Enantioselectivity by the Removal of Reaction Products (Acinetobacter sp. SY-01 Lipase를 이용한 아졸계 화합물 전구체에 대한 광학선택적 가수분해 반응과 생성물 제거에 의한 광학선택성 증가)

  • 윤문영;신평균;정찬성;박정극
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Screening of a strain was carried out to produce an enantioselective lipase toward the precursor of ltraconazole as azole-containg compounds, which are well known as antifungal drug agents. An Acinetobacter sp. SY-01 strain which can selectively hydrolyze the racemic substrates was isolated and the racemic substrate was resolved to the S-ester in 95.6% enantiomeric excess after 74.8% hydrolysis. The optimum temperature and pH for the conversion were $50^{\circ}C$, pH 7.0. However, the temperature and pH had no effect on the enantiomeric excess. Addition of solvents decreased the conversion and slightly increased the enantiomeric excess. However, the kind of solvents had no effect on enantiomeric excess. The substrate concentration decrease enantiomeric excess and this is confirmed by the products generated from hydrolysis, and also enantiomeric excess could be increased by the removal of reaction products.

Antioxidant activity of wood vinegar by bioconversion (생물전환에 의한 발효 목초액의 항산화 활성)

  • Cho, Young-Ho;Cho, Jae-Soo;Lee, Gye-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4434-4442
    • /
    • 2011
  • Reactive oxygen species (ROS) are reactive and potentially harmful to cells, causing oxidation of lipids, proteins, and DNA. In humans, the deleterious effects of ROS have been linked with aging, carcinogenesis, and atherosclerosis. In order to investigate an antioxidant activity of wood vinegar by bioconversion, we preferentially analyzed the total acidity, acetic acid, pH, and contents of total polyphenols and flavonoids, respectively. Also, we evaluated the scavenging abilities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, superoxide anion radicals, hydrogen peroxide radicals, and nitric oxide radicals. The total acidity and amount of acetic acid of wood vinegar after bioconversion were lower than those of wood vinegar before bioconversion, but the pH was higher than that of wood vinegar before bioconversion. The contents of total polyphenols and flavonoids of wood vinegar after bioconversion were 11.17 mg/$m{\ell}$ and 0.42 mg/$m{\ell}$, respectively. The $SC_{50}$ values were in order of superoxide anion radical scavenging activity < DPPH radical scavenging activity < hydrogen peroxide radical scavenging activity < nitric oxide radical scavenging activity. Therefore, these results suggest that wood vinegar by bioconversion can be useful as primary antioxidants for medicines and cosmetics.

Anthraquinone Production in Transformed Roots of Rheum undulatum L. (대황의 형질전환된 뿌리로 부터 anthraquinone의 생산)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Chae, Ho-Zoon;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.88-92
    • /
    • 2002
  • The production of anthraquinone has been dectected in transformed roots of Rheum undulatum L. The effects of medium, initial pH, concentration of sucrose, light irradiation and elicitors on anthraquinone production in transformed roots of Rheum undulatum L. were investigated. The maximum production of anthaquinone was achieved in WPM medium (pH 5.7) supplemented with 6% sucrose, 0.5 mg/l $GA_3$, and 50 mg/l chitosan at 16h light $(16{\mu}mol\;m^{-2}s^{-1})$ condition. Under the optimum conditions, the production of anthraquinone reached to 0.18 mg/g(F.W.) after 8 weeks. The content was estimated about 1.3 times of the level of native roots.

Polyamine 함량이 증가된 형질전환 담배 식물체에서의 스트레스 저항성에 관한 연구

  • Wi, Su-Jin;Park, Gi-Yeong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.189-192
    • /
    • 2001
  • We have investigated the effects of abiotic and biotic stresses on leaf senescence using transgenic tobacco plants, in which cellular contents of polyamines were increased by introducing the genes of polyamine and ethylene biosynthesis in sense or antisense orientation. These transgenic plants showed accumulations of polyamines at higher levels than were found in wild-type. Stress-induced senescence was attenuated in transgenic plants cpmpared with wild-type plants, in terms of total chlorphyll loss and phenotypic changes after oxidative stress of hydrogen peroxide($H_2O_2$), high salinity, acid stress (pH3.0), ABA and fungal pathogen(phytophothora parasitica pv.Nicotianae). Transcripts for antioxidant enzyme, glutathionine-S-transferase and catalase, were also more abundant in transgenic plants than wild-type plants. These result suggested that higher expression of those genes caused a broad-spectrum resistance to abiotic stress/biotic stress. These phenomena indicate that polyamines may play an important role in contributing to the antioxidant defense function in plants. Our findings suggest that facilitate the improvement of stress tolerance of crop plants.

  • PDF

Production of Xylooligosaccharides by Yeast Cell Surface-Displayed Endoxylanase (효모 세포 표면 발현된 Endoxylanase를 이용한 Xylooligosaccharides의 생산)

  • Kim, Hyun-Jin;Lee, Jae-Hyung;Kim, Yeon-Hee;Nam, Soo-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.307-313
    • /
    • 2008
  • The yeast surface expression system, pCTXYN (6.8 kb), of Bacillus endoxylanase gene (xynB, 642 bp) was constructed and introduced into Saccharomyces cerevisiae EBY100 cell. The transformed yeast cell showing the highest endoxylanase activity was selected through the active staining of colonies grown on YPDG medium containing xylan. With the yeast transformant, EBY100/pCTXYN, grown on galactose containing medium, it was found that the endoxylanase was successfully displayed on the yeast cell surface and the xylooligosaccharides were efficiently produced from xylan. The most of endoxylanase activity was detected in the cell fraction and reached about 1.9 unit/mL after 48 h cultivation. The optimized conditions for xylooligosaccharides production from xylan were determined as follows: substrate and its concentration, oat spelt xylan 6%; concentration of yeast whole-cell, 5 unit/mL; temperature, $50^{\circ}C$, and reaction time $2{\sim}4\;h$. When the oat spelts xylan and corncob xylan were hydrolyzed by treatment with cell surface-displayed endoxylanase, xylotriose was formed as a main product.

Visible and Fast Assay System for Tobacco Transformant Introduced with Adenosine Deaminase Marker Gene (Adenosine Deaminase 표지유전자로 형질전환된 연초의 신속한 Assay 방법)

  • 양덕춘;김용환;임학태;방극수;배창휴
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.165-171
    • /
    • 2001
  • New visible and fast assay system have been developed for tobacco transformant introduced with adenosine deaminase (ADA) marker gene, which converts cytotoxic adenosine analogues to non-toxic inosine analogues and ammonia. Ammonia was changed to blue color in the solution of phenol-nitoprusside and alkaline-hypochlorite. It was possible to detect activity of ADA visibly on the holes of 96 well plate using tiny explant of transgenic tobacco leaves within 1 hour incubation time. As substrates of ADA enzyme from transgenic plant on the plate, a number of adenosine analogues such as 9-D-arabinofuranosyl adenine, cordycepin, 2'-deoxyadenosine, adenosine and xylofuranosyl adenine were possible for detection of ADA activity. Optimal condition of substrate for ADA enzyme was each 10 mM and pH 7.5 in adenosine solution. Especially, transgenic plant did not convert adenosine to inosine and ammonia in the presence of ADA inhibitor deoxycoformycin, which means that ammonia produced from transgenic plant is due to expression of ADA gene. Now, we show that this detection system can be easily, sensitively, fast and cheaply as well as visibly assayed in vitro as GUS gene system with very small size of transformant explant.

  • PDF

Cultivation of Alcaligenes eutrophus Transforming Cloned phbC Gene from Alcaligenes latus for Production of P(3-hydroxybutyrate-4-hydroxybutyrate) Containing High Molar Fraction of 4-Hydroxybutyrate (phbC 유전자가 도입된 형질전환 Alcaligenes eutrophus를 이용한 고분율 4-hydroxybutyrate 함유 P(3-hydroxybutyrate-4-hydroxybutyrate)의 생산)

  • Gang, Myeong-Sin;Jeong, Yeong-Mi;Lee, Yong-Hyeon
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.422-428
    • /
    • 1999
  • A transformat Alcaligence eutrophus GA5 harboring phbC gene from A. latus was cultivated for production of Poly(3-hydroxybutyrate-4-hydroxybutyrate)[P(3HB-4HB)] containing high molar fraction of 4-hydroxybutyrate(4HB)] containing high molar fraction of 4-hydroxybutyrate(4HB). Transformation did not influenced significantly on total cell growth, on total cell growth, concentration, and content of P(3HB-4HB), however, significantly influenced on 4HB molar fraction in P(3HB-4HB) increasing from 12.3 to 23.5 mol% after 48 h cultivation in two-stage using 1.0%(W/V) of ${\gamma}$-butyrolactone as a precursor compare to parent strain. Above increment may be due to the accelerated polymerization between 3HB and 4HB converted from precusor compound by amplified phbC gene. Citrate increased remarkbly total cell mass and P(3HB-4HB) concentration, but did not influenced on the molar fraction of 4HB, meanwhile, magnesium ion influenced on P(3HB-4HB) concentration and 4HB molar fraction significantly. The two-stage cultivation method was modified, in such a way minimizing P(3HB) accumulated inside of cell grown at first-stage, consquently, 26.3% of P(3HB-4HB) containing 61.0 mol% of 4HB fraction was obtained after 72hr. Furthermore, semi-homopolymeric P(4HB) containing 92.0 mol% of 4Hb was obtained, and its structure was confirmed by $^1$H-NMR.

  • PDF

Design of Pretreatment Process in Cellulosic Ethanol Production (목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계)

  • Kim, Hyungjin;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.511-514
    • /
    • 2015
  • A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis ($100^{\circ}C$, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast ($55^{\circ}C$, pH = 5.0), AMG ($60^{\circ}C$, pH = 4.5), and spirizyme ($60^{\circ}C$, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.

Carboxydobacteria 를 위한 재조합 Plasmid 백터와 형질전환방법 개발

  • 김진욱;송택선;김영민
    • Korean Journal of Microbiology
    • /
    • v.30 no.3
    • /
    • pp.218-224
    • /
    • 1992
  • Recombinant plasmid shuttle vectors were constructed for genetic studies on the oxidation of carbon monoxide by carboxydobacteria. Two vectors. pYK322 (7.2 kb, Ap'. Tc') and pYK 324 (7.2 kb, Ap', Tc'), were constructed using pBR322 and pYK100. a small plasmid in Pseudomonas carbo,xydovorans. Four plasmids. pYK2IO (5.2 kb. Cm'), pYK220 (5.2 kb, Cmr), pYK230 (5.2 kb, Cm'), and pYK232 (5.2 kb. Cm'), were constructed using pACYC184 and pYK100. Transformation of several carboxydobacteria with pYK322 and pYK220 was round to be efficient when the cells were transformed by the methoti of Bagdasarian and Timmis (Curr. Top. Microbiol. Immunol. 96:47-67. 1982) with several modifications; cells growing on 0.2% succinate were harvested at the mid-exponential phase. 10 mM RbCl in transformation solution was substituted with 100 mM KCI. cclls in transformation solution were incubated for 12 h at 4'C before addition of DNA and heat shock was carried out for 3 min at 45$^{\circ}$C. Plasmid vectors used for transformation, however. were not detected from antibiotics-resistant transformants, suggesting that the vectors may be integrated into the chromosomal DNA.

  • PDF