• Title/Summary/Keyword: pH 전환

Search Result 553, Processing Time 0.033 seconds

The effects GyeongshinhaeGihwan 1 (GGT1) has on the hGHTg (human growth hormone transgenic) obese male rats' body weight and their amount of feed intake (형질전환 비만모델 수컷 hGHTg rats에서 경신해지환(輕身解脂丸)(GGT1)이 체중 및 사료섭취량에 미치는 영향)

  • Jung, Yang-Sam;Choi, Seung-Bae;Kim, Hoon;Shin, Soon-Shik
    • The Korea Journal of Herbology
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Objectives: To find out the effects GGT1, an antiobestic drug widely used clinics, has on the amount of feed intake, the amount of change in the body weight and the food efficiency ratio using the data from the hGHTg obese male rats. Also, to evaluate in terms of antiobestic effects, the difference between GGT1 and reductil (sibutramine), which has been approved by the FDA of the United States. Methods: We measured the change in body weight and the amount of feed intake for 8 weeks by categorizing the hGHTg obese male rats into three groups: the control group, the GGT1 group, and the reductil (RD) group. We also evaluated the antiobestic effect by calculating the food efficiency ratio, which is the increase of bodyweight divided by the amount of feed intake. Results: In case of body weight, moderate slope of the curve in the graph of GGT1 group could mean that the weight is decreasing as time flows. In case of food efficiency ratio, the p-value was 0.745 in a test for determining if an interaction exists between the group and the point of measurement, meaning that it does not exist; also, the p-value in a test for the effect of level of repetition in food efficiency ratio according to the point of measurement equaled 0.002. Conclusion: The drug-treated groups had a greater inhibitory effect in feed intake than the control group. The results showed the food efficiency ratio had a tendency to decrease. The GGT1 group in particular was under a greater effect than the RD group.

  • PDF

The study on increasing of biodegradability by pre-treatment of municipal wasted sludge in anaerobic digestion process (도시하수슬러지의 전처리에 따른 혐기성 소화공정의 생분해율 향상에 관한 연구)

  • Kang, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2002
  • The slow degradation rate of sludge in anaerobic digestion is due to rate-limiting step of sludge hydrolysis. To upgrading of sludge hydrolysis and biodegradabiliry, the pre-treatment had been carried out using acidlc (pH 1.5, 3, 4, 5) and alkaline (pH 9, 10, 13), thermal (50, 100, 150, $200^{\circ}C$), and ultrasonic treatment (400W, 20kHz, 15, 20, 25, 30, 40, 50, 60, 90min). In the best conditions of each treatment, the Soluble SCOD Ratio(%)of treated/untreated sample were increased 102% in acid (pH5), 986% in alkali (pH 13), 595% in thermal ($200^{\circ}C$) and 1123% in ultrasonic (35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acid treatment. In the effects of total gas productivity in vial test, the thermal ($200^{\circ}C$) pre-treatment was the highest, followed by thermal ($150^{\circ}C$), ultrasonic (90min), alkaline (pH 9), and ultrasonic (50min). We compared untreated samples and the most efficient pre-treatment samples(at $200^{\circ}C$, for 30min) on gas productivity with changes of HRT in continuous experiments IN thermal treated samples were 2.5 times in SCOD, 2 times in soluble protein and 3.3 times high in soluble carbohydrate than untreated ones. In gas productivity, the thermal treated samples were average 2 times high than untreated ones. And HRT 7 days was most effective. followed by HRT 10, HRT 15 days. But The gas productiviry of HRT 2.5 days was less than untreated, the reason of low gas productivity was come from high organic acids accumulation within reactor.

  • PDF

Direct Synthesis of Dimethyl Ether from Synthesis Gas (합성가스로부터 디메틸에테르 직접 합성)

  • Hahm, Hyun-Sik;Kim, Song-Hyoung;Kang, Young-Gu;Shin, Ki-Seok;Ahn, Sung-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.4
    • /
    • pp.8-14
    • /
    • 2009
  • Dimethyl ether(DME) was synthesized from synthesis gas by a one-step process in which a hybrid catalyst was used. The hybrid catalyst consisted of Cu-ZnO-$Al_2O_3$ for the methanol synthesis reaction and aluminum phosphate or $H_3PO_4$-modified $\gamma$-alumina for the methanol dehydration reaction. The prepared catalysts were characterized by XRD, BET, SEM, FT-IR and $NH_3$-TPD. From the XRD analysis, it was verified that the aluminum phosphate was successfully synthesized. The specific surface areas of the synthesized aluminum phosphates were varied with the ratio of P/Al. The hybrid catalyst in which P/Al ratio of the aluminum phosphate was 1.2 showed the highest CO conversion of 55% and DME selectivity of 70%. There was no remarkable decrease in catalytic activity with the phosphoric acid treatment of $\gamma$-alumina. However, when treated with concentrated phosphoric acid(85%), the catalytic activity and DME selectivity decreased.

  • PDF

1,3-Propanediol Fermentation using the by-Products from Fat Industry (글리세롤을 함유한 유지산업 부산물의 1,3-propanediol 발효)

  • 김철호;김승환;김세정;박건규;이상기
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • 1,3-Propanediol as a bifunctional organic compound could be used in polymerization reactions producing polyesters and polyurethanes. Byproduct containing high concentration of glycerol from fat industry was used to produce 1,3-propanediol in lower production cost as well as waste treatment. In this study, various attempts were made to increase 1,3-propanediol production under different conditions using Klebsiella pneumoniae ATCC 15380. The conversion yield and byproduct formation were influenced significantly by the fermentation pH and temperature. The optimal glycerol and nitrogen concentration for 1,3-propanediol production were found to be 25 a/L and 1%(w/v), respectively. The formation of 1,3-propanediol was optimal at pH 6.0 and temperature $35^{\circ}C$. 1,3-Propanediol production from byproduct from 2.5% glycerol was lower than that of 2.5% commercial glycerol and amounted only to 9.84 a/L from byproduct, while to 12.13 a/L from commercial glycerol.

Characteristics of $G_{418}$-sensitive mitochondrial ATPase/ATP synthase from pleurotus florida (사철느타리버섯 중 $G_{418}$-sensitive 미토콘드리아성 ATPase/ATP synthase의 특성)

  • Kim, Jae-Woong;Kim, Dong-Hee;Lee, Jung-Bock;Lee, Sur-Koo;Min, Tae-Jin
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.477-484
    • /
    • 1992
  • The mitochondrion was purified at 44% sucrose layer from pleurotus florida by using ultracentrifuge and sucrose density gradient method. Optimum pH and temperature of ATPase and ATP synthase were pH 7.4, $60^{\circ}C$ and pH 7.5, $57^{\circ}C$ respectively, also their Km values were determined as 11.6mM and 8.4mM. ATPase was activated at 5~6mM ATP substrate concentration, then ATP synthase was 5~10mM range ADP. ATPase/ATP synthase were $Mg^{2+}$-dependent enzyme, partially inhibited by their substrate, and then showed an none competitive inhibition pattern by $G_{418}$. Amino acid composition of ATPase/ATP synthase was as follows, hydrophobic amino acid residue was 50.5%, small residue, 56.1%, hydrogen bonding residue, 43.7% and helix breaking residue, 55.2%. Phosphatidyl choline, phosphatidyl ethanolamine and phosphatidyl glycerol were contained but not phosphatidyl inositol and phosphatidyl serine. Palmitate(51.31%), stearate(18.32%) and unsaturated fatty acids($C_{18:1}$, $C_{18:2}$ and $C_{16:1}$) were predominated.

  • PDF

Expression and Secretion of Recombinant Inulinase under the Control of GAL or GAP Promoter in Sacharomyces cerevisiae (Sacharomyces cerevisiae에서 GAL또는 GAP 프로모터 조절에 의한 재조합 Inulinase의 발현 및 분비)

  • 남수완;임현정정봉현장용근
    • KSBB Journal
    • /
    • v.11 no.4
    • /
    • pp.445-452
    • /
    • 1996
  • To investigate the promoter effect on heterologous gene expression in S. cerevisiae, the recombinant plasmids pYI11, pYI12, pYI10-2, and pYIGP were constructed to contain the inulinase gene (INUI) as a reporter under the control of GAL10, GAL7, GAL1, and GAP promoters, respectively. When the yeasts transformants were cultivated on galactose-containing rich media, the cell growth reached to 36-39 OD600 at 72 hours of cultivation. The specific growth rates of the cells harboring the four different plasmids decreased similarly : they dropped from $0.24 h^{-1}$ during the glucose-consuming period to 0.04 -$0.10 h^{-1}$ during the galactose-consuming period (gene expression phase for GAL promoter system). After the depletion of glucose, the expression of inulinase gene was started and reached to maximal levels of 4.3(GAL1 promoter), 4.0(GAL10 promoter), 3.8(GAL7 promoter), and 1.6(GAP promoter) unit/mL at 72 hours of cultivation. Based on the maximal expression level and activity staining on the plate, the promoter strength was in the order of GAL1, GAL10, GAL7 and GAP promoter. While the GAL-promoter systems showed a high plasmid stabilities of more than 78%, the GAP-promoter plasmid revealed a lower plasmid stability of 55%. Most of inulinase activity (98%) was found in the extracellular medium, indicating that the secretion efficiency of inulinase is independent on the type of promoter.

  • PDF

Oxidative Degradation of the Herbicide Dicamba Induced by Zerovalent Iron (Zerovalent Iron에 의해 유도되는 제초제 Dicamba의 산화적 분해)

  • Lee, Kyung-Hwan;Kim, Tae-Hwa;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.86-91
    • /
    • 2008
  • Dicamba(3,6-dichloro-2-methoxybenzoic acid) is used to control for pre and post-emergence of annual and perennial broad-leaf weeds. It is very soluble in water and highly mobile, acidic herbicide. So it is easily moved and detected in groundwater. Zerovalent iron(ZVI) has been used for the reductive degradation of certain compounds through amination of nitro-substituted compounds and dechlorination of chloro-substituted compounds. In this study, we investigated the potential of ZVI for the oxidative degradation of dicamba in water. The degradation rate of dicamba by ZVI was more rapidly increased in pH 3.0 than pH 5.0 solution. The degradation percentage of dicamba was increased with increasing amount of ZVI from 0.05% to 1.0%(w/v) and reached above 90% within 3 hours of reaction. As a result of identification by GC-MS after derivatization with diazomethane, we obtained three degradation products of dicamba by ZVI. They were identified 4-hydroxy dicamba or 5-hydroxy dicamba, 4,5-dihydroxy dicamba and 3,6-dichloro-2-methoxyphenol. 4-Hydroxy dicamba or 5-hydroxy dicamba and 4,5-dihydroxy dicamba are hydroxylation products of dicamba. 3,6-dichloro-2-methoxyphenol is hydroxyl group substituted compound instead of carboxyl group in dicamba. We also confirmed the same degradation products of dicamba in the Fenton reaction which is one of oxidation processes using ferric sulfate and hydrogen peroxide. But we could not find out the dechlorinated degradation products of dicamba by ZVI.

Characteristics of Methanol Production Derived from Methane Oxidation by Inhibiting Methanol Dehydrogenase (메탄올탈수소효소 저해시 메탄산화에 의한 메탄올 전환생성 특성)

  • Yoo, Yeon-Sun;Han, Ji-Sun;Ahn, Chang-Min;Min, Dong-Hee;Mo, Woo-Jong;Yoon, Soon-Uk;Lee, Jong-Gyu;Lee, Jong-Yeon;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.662-669
    • /
    • 2011
  • This study was conducted to biologically convert methane into methanol. Methane contained in biogas was bio-catalytically oxidized by methane monooxygenase (MMO) of methanotrophs, while methanol conversion was observed by inhibiting methanol dehydrogenase (MDH) using MDH activity inhibitors such as phosphate, NaCl, $NH_4Cl$, and EDTA. The degree of methane oxidation by methanotrophs was the most highly accomplished as 0.56 mmol for the condition at $35^{\circ}C$ and pH 7 under 0.4 (v/v%) of biogas ($CH_4$ 50%, $CO_2$ 50%) / Air ratio. By the inhibition of 40 mM of phosphate, 50 mM of NaCl, 40 mM of $NH_4Cl$ and $150{\mu}m$ of EDTA, methane oxidation rate could achieve more than 80% regardless of type of inhibitors. In the meantime, addition of 40 mM of phosphate, 100 mM of NaCl, 40 mM of $NH_4Cl$ and $50{\mu}m$ of EDTA each led to generating the highest amount of methanol, i.e, 0.71, 0.60, 0.66, and 0.66 mmol when 1.3, 0.67, 0.74, and 1.3 mmol of methane was each concurrently consumed. At that time, methanol conversion rate was 54.7, 89.9, 89.6, and 47.8% respectively, and maximum methanol production rate was $7.4{\mu}mol/mg{\cdot}h$. From this, it was decided that the methanol production could be maximized as 89.9% when MDH activity was specifically inhibited into the typical level of 35% for the inhibitor of concern.

Transformation of Mosquito Larvicidal Bdillus sphaericus 1593 by Plasmid pGB215-110$\Delta$B (모기유충 방제균 Bacillus sphaericus 1593의 형질전환 조건)

  • 한길환;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.2
    • /
    • pp.156-163
    • /
    • 1995
  • Bacillus sphaericus 1593 is pathogenic to the larvae of a number of mosquito species that are known as important vectors for the transmission of certain human and animal diseases. As a preliminary experiment for developing a multfunctional B. sphaericus 1593 as a potent antagonist, we investigated the conditions for the protoplast transformation system of B. sphaericus 1593 using the plasmid pGB215-110$\Delta$B. The protoplast of B. sphaericus 1593 were obtained most efficiency by treating the cells with 500 $\mu$g/ml of lysozyme in the SMM buffer containing 0.5 M sucrose at pH 8.0 and 40$\circ$C for 60 minutes. The cell wall was regenerated on the plate containing 1.2% agar and 0.8 M mannitol. Under the best condition for protoplast formation and regeneration established in the work the highest frequency of transformation was achieved with the 40% PEG (M.W 4,000) treatment for 15 minutes of incubation at 4$\circ$C, and subsequently for 120 minutes incubation at 30$\circ$C for phenotypic expression. The highest transformation efficiency were observed at 1.0 $\mu$g/ml of the final concentration of the plasmid DNA and the plasmids were found to be fairly stable since about 70% of the plasmids were maintained after 8 successive daily transfers onto the fresh medium.

  • PDF

Cloning, Sequencing and Comparison of Genes for early Enzymes of the Protocatechuate (ortho-Cleavage) Pathway in Pseudomonas putida (Pseudomonas putida의 Protocatechuate 경로에 관여하는 초기 효소들의 유전자의 클로닝 및 염기서열 분석비교)

  • Hong, Bum-Shik;Shin, Dong-Hoon;Kim, Jae-Ho
    • Applied Biological Chemistry
    • /
    • v.39 no.6
    • /
    • pp.472-476
    • /
    • 1996
  • The major portions of two DNA fragments, one from degradative plasmid, pRA4000 from Pseudomonas putida NCIMB 9866, and the other from degradative plasmid, pRA500 from P. putida NCIMB 9869, which harbor the structural genes for the flavoprotein (pchF) and cytochrome (pchC) subunits of p-cresol methylhydroxylase (PCMH), have been sequenced. The DNA and deduced amino acid sequences for pchC and pchF have been published. In these fragments, a coding region (dhal) for an aldehyde dehydrogenase has been identified. It is proposed that this gene encodes for the aldehyde dehydrogenase which converts p-hydroxybenzyaldehyde to p-hydroxybenzoate. p-Hydroxybezealdehyde is the product of oxidation of p-cresol by PCMH. The fragment from P. putida 9869 also harbors the genes for the ${\alpha}$ (pcaG) and ${\beta}$ (pcaH) subunits of protocatechuate 3,4-dioxigenase. The fragment from 9866 does not have any portion of these genes in the corresponding region A possible open reading frame (ORF) between pchC and pchF is seen for both clones, and a second putative open reading frame (ORF') also exists in the 9866 clone. The gene organizations are dhal-pchC-ORF-pchF-pcaGH for the DNA fragment from 9869, and ORF-dhal-pchC-ORF-pchF for the DNA fragment from 9866.

  • PDF