• 제목/요약/키워드: pH 전환

Search Result 552, Processing Time 0.03 seconds

Production and Properties of Hemicellulases by a Cellulosimicrobium sp. Isolate (Cellulosimicrobium sp. 분리균의 Hemicellulases 생산성과 효소특성)

  • Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.252-258
    • /
    • 2011
  • A bacterial strain capable of hydrolyzing xylan and locust bean gum (LBG) was isolated from farm soil by enrichment culture using mixture of palm kernel meal (PKM) and wheat bran as carbon source. Nucleotide sequence of 16S rDNA amplified from the isolate YB-1107 showed high similarity with those of genus Cellulosimicrobium strains. Xylanase productivity was increased when the Cellulosimicrobium sp. YB-1107 was grown in the presence of wheat bran or oat spelt xylan, while mannanase productivity was increased drastically when grown in the presence of PKM or LBG. Particularly, maximum mannanase and xylanase activities were obtained in the culture filtrate of media containing 0.7% PKM or 1% wheat bran, respectively. Both enzyme activities were produced at stationary growth phase. Mannanase from the culture filtrate showed the highest activity at $55^{\circ}C$ and pH 6.5. Xylanase activity was optimal at $65^{\circ}C$ and pH 5.5. The predominant products resulting from the mannanase or xylanase hydrolysis were oligosaccharides for LBG or xylan, respectively. In addition, the enzymes could hydrolyze wheat bran and rice bran into oligosaccharides.

Continuous Automated Determination of Urea Using a New Enzyme Reactor (새로운 효소반응기를 이용한 요소의 연속·자동화 정량)

  • Heung Lark Lee;Seung Tae Yang
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.3
    • /
    • pp.393-404
    • /
    • 1992
  • The response properties of continuous automated system using an enzyme reactor for determination of urea were investigated. The enzyme reactor was constructed to packed-bed form which filled with nylon-6 beads (42∼48 mesh), which immobilized urease with glutaraldehyde, in teflon tube (2 mm I.D., 20 cm length). The system was composed of the enzyme reactor, gas dialyzer, and tublar PVC-nonactin membrane ammonium ion-selective electrode as an indicator electrode in serial order. The response characteristics of this system were as follows. That is, the concentration range of linear response, slope of linear response, detection limit, and conversion percentage were $5.5{\times}10^{-6}$$2.4{\times}10^{-3}M$, 57.8 mV/decade, $1.5{\times}10^{-6}$, and 80.8%, respectively. The optimum buffer and life time of urease reactor were 0.01M Tris-HCl buffer solution (pH 7.0∼7.8) and 0.01M phosphate buffer solution (pH 6.9∼7.5) and about 150 days, respectively. And the urease reactor had no interferences of the other physiological materials.

  • PDF

Production of Acetate from Waste Gas using Peptostreptococcus productus (Peptostreptococcus productus를 이용한 산업체 부생가스로부터 아세테이트 생산)

  • 강환구;전희진
    • KSBB Journal
    • /
    • v.15 no.2
    • /
    • pp.188-194
    • /
    • 2000
  • The anaerobic bacterium P. productus was known to produce acetate from CO, C02 and H2. In this research the acetate f formation from waste gas was studied. For this research, kinetic parameter study on CO conversion were carried out. From t this study maximum CO conversion rate of 39.3 mmol/L . hr . 0.0 and Km of 0.578 atm were obtained. Also the effect of c CO refreshment, N source, initial pH and c비ture temperature on acetate formation were studied. Acetate formation in 5L lab s scale fermenter was tested and specific acetate production rate of 0.48 g/L-hr-O.O. was obtained and the acetate c concentration was 21 g/L.

  • PDF

Characterization of Transgenic Tall Fescue Plants Expressing Two Antioxidant Genes in Response to Environmental Stresses (두 가지 항산화유전자를 동시에 발현시킨 형질전환 톨 페스큐 식물체의 환경스트레스에 대한 내성 특성 해명)

  • Lee, Sang-Hoon;Lee, Ki-Won;Kim, Ki-Yong;Choi, Gi-Jun;Seo, Sung;Kwak, Sang-Soo;Kwon, Suk-Yoon;Yun, Dae-Jin;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.2
    • /
    • pp.109-116
    • /
    • 2007
  • Environmental stress is the major limiting factor in plant productivity. As an effort to solve the global food and environmental problems using the plant biotechnology, we have developed transgenic tall fescue (Festuca arundinacea Schreb.) plants via Agrobacterium-mediated gene transfer method. To develop transgenic tall fescue plants with enhanced tolerance to the environmental stresses, both CuZn superoxide dismutase (CuZnSOD) and ascorbate peroxidase (APX) genes were incorporated in a pIG121 binary vector and the both of the genes were controlled separately by an oxidative stress-inducible sweet potato peroxidase 2 (SWPA2) premoter expressed in chloroplasts. Leaf discs of transgenic plants showed 10-30% less damage compared to the wild-type when they exposed to a wide range of environmental stresses including methyl viologen (MV), $H_2O_2$ and heavy metals. In addition, when $200{\mu}M$ MV was sprayed onto the whole plants, transgenic plants showed a significant reduction of visible damage compared to wild-type plants that were almost damaged. These results suggest that over expression of CuZnSOD and APX genes in transgenic plants might be a useful strategy to protect the crops against a wide range of environmental stresses.

Properties of an Extracellular 5-Fluorocytosine Deaminase (세포외 5-Fluorocytosine Deaminase의 특성)

  • Yeeh, Yeehn;Jun, Hong-Ki;Yoon, Yong-Kyun
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.150-155
    • /
    • 1992
  • - Some properties of an extracellular cytosine deaminase excreted from an isolate from soil samples were examined after 20~80%' ammonium sulfate fractionation. The enzyme catalyzed the conversion of cytosine and 5-fluorocytosine into uracil and 5-fluorouracil by substrate specificity, respectively. The optimum temperature and storage time on the stability of the enzvme preparation were below $50^{\circ}C$ keeping above 90% of the residual activity and near 4 days keeping above 80% of the residual one in Tris-HCI buffer. The maximum activity was also obtained at 8.0 in pH and 37'C in temperature. The pHs and temperatures for enzyme activity ranged from 8.0~8.5 and from 37~$45^{\circ}C$. respectively. The presence of $Ag^-,Hg^{2-}, Zn^{2-}, Cu^{2-}, Sn^{2-}, \; or\; Pb^{2-}$ in the reaction mixture resulted in the marked inhibition in enzyme activity, but 1 mM of $K^+, Fe^[3+}, Mg^{2+}, \; or \; Na^+$. slightly increased the activity. The enzyme preparation was heavily affected by most of inhibitors tested such as 1 mM of EIITA, NaCN and pentachlorophenol, and completely inactivated by p-CMB and TCA of 1 mM, or 10 mM.

  • PDF

Development of Bialaphos Resistant Transgenic Tabacco Plants by Pollination and Utilization of Fertilization Cycle (수분ㆍ수정 시기를 이용한 Bialaphos 저항성 형질전환 담배의 개발)

  • ;;;;;;Toshiaki KAMEYA
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.2
    • /
    • pp.99-103
    • /
    • 1994
  • The herbicide bialaphos is a potent inhibitor of glutamine synthetase in higher plants. A bialaphos resistance (bar) gene encoding for an acetyltransferase was isolated from genomic DNA of Pseudomonas syringae pv tabaci. The bar gene was ligated to the binary vector pBI121. Pistils of tobacco plane were heated with the bar gene containing plasmid DNA at various times after pollination. When the treatment was applied at 30 and 40 h after pollination, a number of transgenic plants were obtained. Premary transformation (T$_{0}$ generation) and their progenies (T$_1$T$_2$) were resistant to both bialaphos and kanamycin at a dosage lathal to untransformed control plants. Stable integration of bar gene into chromosomal DNA was proven by Southern blot analysis of genomic DNA isolated from T$_1$progenies. These results show that the bialaphos resistant plane could be obtained by treatment to pistils with the exgenous bar gene through the fertilization cycle of tobacco.o.

  • PDF

Plant Regeneration from Hairy Root of Rehmannia glutinosa Liboschitz Transformed by Agrobacterium rhizogenes (형질전환된 지황의 모상근으로부터 식물체의 재분화)

  • Hwang, Sung-Jin
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • A protocol for plant regeneration from hairy root of Rehmannia glutinosa transformed by Agrobacterium rhizogenes ATCC15834 has been developed. Transgenic shoots were regenerated from hairy roots within 6 weeks after culture on the SH medium supplemented with 0.5 mg/l BA. Shoots were rooted on plant growth regulator free SH medium successfully. The transformed plants, which were regenerated from hairy roots, had thiner roots with extensive lateral branches, wrinkled leaves, shorter node, and grew faster compared with non-transformed plants. The biomass of the transformed plant was 1.28 g (F.W) per plant, significantly higher than the non-transformed plant (0.54 g F.W). The catalpol content in the transformed plant (0.56%) was also higher than that of the non-transformed plants (0.43%).

A study on the characteristic of livestock resources run-off from land for agricultural crop (축분자원화물의 작물재배 농지 유출특성에 관한 연구)

  • Han, Gi-Bong;Lee, Young-Sin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.4
    • /
    • pp.74-83
    • /
    • 2011
  • In this study, to estimate the transforming (runoff and leachate) rate of the livestock resources applying to agricultural crop land as fertilizer, field scale test was conducted and the results were obtained as follows. According to results of livestock resources effect to agricultural land, the total amount of harvested crop from testing bed was $0.437kg/m^2$, and nutrient contents were $0.024{\pm}0.006%$ and $0.020{\pm}0.004%$ for N and P, respectively. Dynamics of contaminants in the livestock resources to be supplied to agricultural crop land showed that concentrations were continuously decreased to the level of blank test bed until 60 days of planting. The amount of runoff from farm land showed the tendency to increase according to the increase of rainfall intensity. Run-off ratio of 10mm/h rainfall intensity for agricultural land showed that each contaminant concentration was increased due to rainfall intensity with 8 mm/h, specifically SS showed the highest increase.

Pilot Scale Production of (R)-3-Hydroxybutyric acid by Metabolically Engineered Escherichia coli. (Pilot 규모에서의 재조합 대장균을 이용한 (R)-3-Hydroxybutyric acid 생산)

  • 최종일;이승환;최성준;이상엽
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2004
  • Production of (R)-3-hydroxybutyric acid (R3HB) by fed-batch culture and continuous culture of metabolically engineered Escherichia coli harboring Ralstonia eutropha PHB biosynthesis and depolymerase genes was examined in a 30 1 pilot-scale fermentor. A new stable two-plasmid system, pBRRed containing the R. eutropha PHB depolymerase gene and pMCS 105 containing the R. eutropha PHB biosynthesis genes, was developed. Among a variety of E. coli strains harboring plasmids, recombinant E. coli XL-10 Gold (pBRRed, pMCS105) was able to produce R3HB with the highest efficiency in a batch culture. By the fed-batch culture of recombinant E. coli XL-10 Gold(pBRRed, pMCS 105) in a 30 1 fer-mentor, the final R3HB concentration was 22.4 g/l giving a productivity of 0.97 g/l-h. To produce R3HB to a high concentration with high productivity, a new strategy of fed-batch culture followed by a continuous culture was investigated. The maximum productivity and R3HB concentration were 5.06 g/l-h and 25.3 g/l, respectively. These results show that economical production of R3HB is possible by recombinant E. coli in large scale.

Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction (기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향)

  • Lee, So-eun;Kim, Seong-Soo;Jeong, Do-Young;Kang, Yong;Lee, Seung-Jae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.891-897
    • /
    • 2019
  • In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid ($H_3PO_4$), vanadium (V) pentoxide ($V_2O_5$) and molybdenum (VI) trioxide ($MoO_3$). Catalytic performance was examined at $140^{\circ}C$ for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and $H_3PO_4$ content and increasing $V_2O_5$ content. Acidity of the catalysts was investigated with $NH_3-TPD$. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In $NH_3-TPD$ result, the ratio of strong acid site corresponding to $NH_3$ desorption between $400^{\circ}C$ and $500^{\circ}C$ was increased by decreasing $MoO_3$ and $H_3PO_4$ content and increasing $V_2O_5$ content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.