DOI QR코드

DOI QR Code

Effects of Composition in P-V-Mo Catalysts Supported on Activated Carbon for Vapor Formaldehyde Reaction

기상 포름알데히드 반응을 위한 활성탄에 담지한 P-V-Mo 촉매의 조성에 따른 영향

  • Lee, So-eun (Climate Change Research Division, Korea Institute of Energy Research (KIER)) ;
  • Kim, Seong-Soo (Climate Change Research Division, Korea Institute of Energy Research (KIER)) ;
  • Jeong, Do-Young (Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Yong (Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Seung-Jae (Climate Change Research Division, Korea Institute of Energy Research (KIER))
  • 이소은 (한국에너지기술연구원 기후변화연구본부) ;
  • 김성수 (한국에너지기술연구원 기후변화연구본부) ;
  • 정도영 (한국원자력연구원 양자광학연구부) ;
  • 강용 (충남대학교 응용화학공학과) ;
  • 이승재 (한국에너지기술연구원 기후변화연구본부)
  • Received : 2019.08.01
  • Accepted : 2019.08.21
  • Published : 2019.12.01

Abstract

In this study, heteropoly acid PVMo catalysts were supported on activated carbon with various composition of phosphoric acid ($H_3PO_4$), vanadium (V) pentoxide ($V_2O_5$) and molybdenum (VI) trioxide ($MoO_3$). Catalytic performance was examined at $140^{\circ}C$ for 1hour in vapor formaldehyde. XRD and BET analyses were carried with the catalysts before and after the reaction. Formaldehyde conversion was increased with decreasing Mo and $H_3PO_4$ content and increasing $V_2O_5$ content. Acidity of the catalysts was investigated with $NH_3-TPD$. Crystallinity of the catalysts was relatively low, and surface area was decreased after the reaction. In $NH_3-TPD$ result, the ratio of strong acid site corresponding to $NH_3$ desorption between $400^{\circ}C$ and $500^{\circ}C$ was increased by decreasing $MoO_3$ and $H_3PO_4$ content and increasing $V_2O_5$ content. Therefore, it was found that the strong acid site could affect the catalytic reactivity in vapor formaldehyde conversion.

본 연구에서는 Phosphoric acid ($H_3PO_4$)와 Vanadium (V) pentoxide ($V_2O_5$), Molybdenum (VI) trioxide ($MoO_3$)으로 부터 조성을 달리하여, heteropoly acid의 PVMo 촉매를 활성탄 지지체에 담지하였다. 촉매의 반응성 조사를 위해, 기상의 포름알데히드를 $140^{\circ}C$의 온도에서 1시간 동안 반응시켰다. 반응전후의 촉매는 XRD와 BET 분석을 수행하였으며, 촉매의 산도 측정을 위해 $NH_3-TPD$을 수행하였다. 포름알데히드의 전환율은 $MoO_3$$H_3PO_4$ 성분이 감소하고 $V_2O_5$ 성분이 증가함에 따라 증가하였다. 대부분의 촉매에서 비교적 낮은 촉매 결정성이 관찰되었으며, 비표면적은 반응후 다소 감소하는 것으로 나타났다. $NH_3-TPD$ 분석 결과, $400^{\circ}C{\sim}500^{\circ}C$에 해당하는 강한 산점의 비율이 $MoO_3$$H_3PO_4$ 성분의 함량이 감소하고 $V_2O_5$ 성분의 함량이 증가함에 따라 증가하였다. 이러한 강한 산점의 비율이 포름알데히드의 전환율에 영향을 미치는 것으로 나타났다.

Keywords

References

  1. Emig, G., Kern, F., Ruf, St. and Warnecke, H.-J., "Vapour-phase Trimerisation of Formaldehyde to Trioxane Catalyzed by 1-vanado-11-molybdophosphoric acid: A Reaction Rate with An Unusual Pressure Dependency," Appl. Catal. A: Gen., 118, L17-L20(1994). https://doi.org/10.1016/0926-860X(94)80085-5
  2. Kern, F., Ruf, St. and Emig, G., "Vapour-phase Trimerization of Formaldehyde to Trioxane Catalysed by 1-vanado-11-molybdo-Phosphoric Acid," Appl. Catal. A: Gen., 150, 143-151(1997). https://doi.org/10.1016/S0926-860X(96)00286-4
  3. Nakao, H., Yutaka, K. and Arata, C., "Solid Phosphoric Acid Catalyst and Method for Producing Trioxane," J. P. Patent No. 6, 332, 913 B2(2018).
  4. Boudjema, S., Vispe, E., Choukchou-Braham, A., Mayoral, J. A., Bachira, R. and Fraileb, J. M., "Preparation and Characterization of Activated Montmorillonite Clay Supported 11-molybdo-vanado-phosphoric Acid for Cyclohexene Oxidation," RSC Adv., 5, 6853-6863(2015). https://doi.org/10.1039/C4RA13604G
  5. Sopa, M., Waclaw-Held, A., Grossy, M., Pijanka, J. and Nowinska, K., "Ethane to Acetic Acid Oxidation over Supported Heteropoly Acids," Appl. Catal. A: Gen., 285, 119-125(2005). https://doi.org/10.1016/j.apcata.2005.02.013
  6. Sawant, D. P., Vinu, A., Justus, J., Srinivasu, P. and Halligudi, S. B., "Catalytic Performances of Silicotungstic Acid/zirconia Supported SBA-15 in An Esterification of Benzyl Alcohol with Acetic Acid," J. Mol. Catal. A-Chem., 276, 150-157(2007). https://doi.org/10.1016/j.molcata.2007.07.001
  7. Chimienti, M. E., Pizzio, L. R., Caceres, C. V. and Blanco, M. N., "Tungstophosphoric and Tungstosilicic Acids on Carbon as Acidic Catalysts," Appl. Catal. A: Gen., 208, 7-19(2001). https://doi.org/10.1016/S0926-860X(00)00702-X
  8. Sharma, P. and Patel, A., "Zirconia Supported 12-molybdophosphoric Acid: Physico-chemical Characterization and Non-solvent Liquid Phase Oxidation of Styrene," Appl. Surf. Sci., 255, 7635-7641(2009). https://doi.org/10.1016/j.apsusc.2009.04.041
  9. Ressler, T., Dorn, U., Walter, A., Schwarz, S. and Hahn, A. H. P., "Structure and Properties of $PVMo_{11}O_{40}$ Heteropolyoxomolybdate Supported on Silica SBA-15 as Selective Oxidation Catalyst," J. Catal., 275, 1-10(2010). https://doi.org/10.1016/j.jcat.2010.07.001
  10. Rafiee, E., Shahbazi, F., Joshaghani, M. and Tork, F., "The Silica Supported $H_3PW_{12}O_{40}$ (a heteropoly acid) as An Efficient and Reusable Catalyst for a One-pot Synthesis of ${\beta}$-acetamido Ketones by Dakin-West Reaction," J. Mol. Catal. A-Chem., 242, 129-134 (2005). https://doi.org/10.1016/j.molcata.2005.08.005
  11. Kokorin, A. I., Kulak, A. I., Tomskii, I. S. and Rufov, Yu., "Spectroscopy of Mixed Molybdenum-vanadium Oxides and Catalytic Oxidation of Toluene," Russ. J. Phys. Chem., 7, 255-261(2013). https://doi.org/10.1134/S1990793113030044
  12. Kalantar-Zadeh, K., Wlodarski, W., Tang, J., Wang, M., Wang, K. L., Shailos, A., Galatsis, K., Kaner, R. B., Kojima, R., Strong, V. and Lech, A., "Synthesis of Nanometre-thick $MoO_3$ Sheets," RSC., 2, 429-433(2010).
  13. Salavati, H. and Rasouli, N., "Synthesis and Characterization of Supported Heteropolymolybdate Nanoparticles Between Silicate Layers of Bentonite with Enhanced Catalytic Activity for Epoxidation of Alkenes," Mater. Res. Bull., 46, 1853-1859(2011). https://doi.org/10.1016/j.materresbull.2011.07.037
  14. Wu, X. L., Xiao, M., Meng, Y. Z. and Lu, Y. X., "Direct Synthesis of Dimethyl Carbonate on $H_3PO_4$ Modified $V_2O_5$," J. Mol. Catal. A-Chem., 238, 158-162(2005). https://doi.org/10.1016/j.molcata.2005.05.018
  15. Bezerra, F. A., Altino, H. O. N. and Soares, R. R., "Oxidative Dehydration of Glycerol over Molybdenum- and Vanadium-Based Catalysts," J. Braz. Chem. Soc., 30, 1025-1033(2019).
  16. Suppiah, D., Komar, A. and Hamid, S., "Structural Dynamics of Molybdenum Vanadium Oxide (MoVOx)," J. Therm. Anal. Calorim., 129, 1367-1376(2017). https://doi.org/10.1007/s10973-017-6333-1
  17. Chary, K. V. R., Bhaskar, T., Kishan, G. and Reddy, K. R., "Characterization and Reactivity of Molybdenum Oxide Catalysts Supported on Niobia," J. Phys. Chem. B., 105, 4392-4399(2001). https://doi.org/10.1021/jp003201y
  18. Zhao, H., Zuo, C., Yang, D., Li, C. and Zhang, S., "Effects of Support for Vanadium Phosphorus Oxide Catalysts on Vapor-phase Aldol Condensation of Methyl Acetate with Formaldehyde," Ind. Eng. Chem. Res., 55, 12693-12702(2016). https://doi.org/10.1021/acs.iecr.6b03079
  19. Yin, X., Han, H., Gunji, I., Endou, A., Ammal, S. S. C., Kubo, M. and Miyamoto, A., "$NH_3$ Adsorption on the Bronsted and Lewis Acid Sites of $V_2O_5(010)$: A Periodic Density Functional Study," J. Phys. Chem. B., 103, 4701-4706(1999). https://doi.org/10.1021/jp990363p
  20. Kim, S. Y., Jermy, B. R., Bineesh, K. V., Lim, D. O., Kim, K. H. and Park, D. W., "Catalytic Performance of V-KIT-6 for the Oxidation of Styrene," Korean Chem. Eng. Res., 47, 275-280(2009).
  21. Mitran, G., Neatu, F., Pavel, O. D., Trandafir, M. M. and Florea, M., "Behavior of Molybdenum-Vanadium Mixed Oxides in Selective Oxidation and Disproportionation of Toluene," Materials,, 12, 748(2019). https://doi.org/10.3390/ma12050748
  22. Yu, X., Bao, Q., Wang, Z., Zhang, Y., Liu, B., Ma, H. and Wang, Y., "Effect of Phosphoric Acid on HZSM-5 Catalysts for Prins Condensation to Isoprene from Isobutylene and Formaldehyde," Chem. Res. Chin. Univ., 34, 485-489(2018). https://doi.org/10.1007/s40242-018-7236-9