DOI QR코드

DOI QR Code

Evaluation of Cell Viability and Delivery Efficiency in Electroporation System According to the Concentrations of Propidium Iodide and Yo-Pro-1

전기천공시스템에서 Propidium Iodide와 Yo-Pro-1의 농도에 따른 세포 생존율과 전달효율 평가

  • Bae, Seo Jun (Department of Chemical Engineering, Pukyong National University) ;
  • Im, Do Jin (Department of Chemical Engineering, Pukyong National University)
  • Received : 2019.08.22
  • Accepted : 2019.09.20
  • Published : 2019.12.01

Abstract

In this study, basic research was conducted to provide guidelines for selecting fluorescent dye and using proper concentration of fluorescent dye to use evaluation of cell viability and fluorescent dye delivery efficiency. Propidium iodide and Yo-Pro-1 were used as fluorescent dyes. In the evaluation of cell viability and the efficiency of delivery using Propidium Iodide and Yo-Pro-1, the histogram of each fluorescent dye was different depending on the type of fluorescent dye and the concentration used. These results were related to the characteristics of the fluorescent dyes used. This was related to the properties of the fluorescent dyes used. From these results, it was found that the analytical results depending on the characteristics of the fluorescent dyes used in the cell analysis. The effect of the fluorescent dye on the cell was confirmed, but it was confirmed that it did not affect the analysis result. In addition, the influence of interference between fluorescent signals was confirmed when two or more kinds of fluorescent dyes were used for analysis. The higher the concentration of Yo-Pro-1 was, the larger the effect of interference was, and the concentration of Propidium Iodide did not affect the interference of fluorescence signal. This study confirmed that the evaluation of the cell viability and the evaluation of the delivery efficiency were influenced by the type and concentration of the fluorescent dyes and it was related to the characteristics of the fluorescent dyes. Based on the results, appropriate concentrations of fluorescent dyes suitable for evaluation of cell viability and delivery efficiency were suggested.

본 연구에서는 전기천공시스템에서 형광 염료를 사용한 세포 생존율 평가와 형광 염료를 전달 물질로 하여 세포 내부로의 전달 효율 평가를 통해 세포의 생존율과 전달 물질의 전달 효율 평가에 사용하기 적합한 형광 염료의 선정 및 사용에 적절한 농도에 대한 가이드라인을 제시 할 수 있는 기초 연구를 수행하였다. 형광 염료로는 Propidium Iodide와 Yo-Pro-1을 사용하였다. Propidium Iodide과 Yo-Pro-1을 사용한 세포 생존율 평가와 전달 효율의 평가에서 각 형광염료의 유세포 분석 히스토그램의 모양은 형광 염료의 종류와 사용한 농도에 따라 다른 것을 확인하였다. 이는 사용하는 형광 염료의 특성과 연관이 있는 것으로 이 결과를 통해 세포 분석에 사용하는 형광 염료의 특성에 따라 분석 결과가 달라지는 것을 알 수 있었다. 형광 염료 자체가 세포 생존률에 미치는 영향은 크지 않음을 확인하였다. 또한 두 종류 이상의 형광 염료를 사용하여 분석을 하는 경우 발생할 수 있는 형광 신호 간의 간섭 영향을 확인하였다. 간섭의 영향은 Yo-Pro-1의 농도가 높을수록 큰 것으로 확인되었으며 Propidium Iodide의 농도는 형광 신호의 간섭에 큰 영향을 미치지 않음을 확인하였다. 본 연구를 통해 형광 염료의 종류와 농도에 따라 세포 생존율 평가와 전달 효율의 평가 결과가 영향을 받는 것을 확인했으며 이는 형광 염료의 특성과 연관이 있는 것으로 판단된다. 또한, 본 연구 결과를 토대로 세포 생존율 평가와 전달 효율 평가에 적절한 형광 염료의 선정과 사용에 적절한 농도를 제시하였다.

Keywords

References

  1. Murphy, T. W., Zhang, Q., Naler, L. B., Ma, S. and Lu, C., "Recent Advances in the Use of Microfluidic Technologies for Single Cell Anlaysis," Analyst, 143, 60-80(2018). https://doi.org/10.1039/C7AN01346A
  2. Ueno, T. and Nagano, T., "Fluorescent Probes for Sensing and Imaging," Nat. Methods, 8(8), 642-645(2011). https://doi.org/10.1038/nmeth.1663
  3. Guo, S. L., Zhao, X. Q., Tang, Y., Wan, C., Alam, M. A., Ho, S. H., Bai, F. W. and Chang, J. S., "Establishment of an Efficient Genetic Transformation System in Scenedesmus Obliquus," J. Biotechnol., 163, 61-68(2013). https://doi.org/10.1016/j.jbiotec.2012.10.020
  4. Kim, S. G., Shin, D. K., Choe, J. Y., Lee, J. W., Suh, E. J. and Suh, H. S., "Quantitation of the Early Apoptotic Cells Using Flow Cytometry," Korean J. Clin. Pathol. 19, 108-113(1999).
  5. Boens, N., Leen, V. and Dehaen, W., "Fluorescent Indicators Based on BODIPY," Chem. Soc. Rev., 41, 1130-1172(2012). https://doi.org/10.1039/C1CS15132K
  6. Qian, X., Xiao, Y., Xu, Y., Guo, X., Qian, J. and Zhu, W., ""Alive" Dyes as Fluorescent Sensors: Fluorophore, Mechanism, Receptor and Images in Living Cells," Chem. Commun., 46, 6418-6436(2010). https://doi.org/10.1039/c0cc00686f
  7. Garenr, D. L. and Johnson, L. A., "Viability Assessment of Mammalian Sperm using SYBR-14 and Propidium Iodide," Biol. Reprod., 53, 276-284(1995). https://doi.org/10.1095/biolreprod53.2.276
  8. Marie, D., Vaulot, D. and Partensky, F., "Application of the Novel Nucleic Acid Dyes YOYO-1, YO-PRO-1, and PicoGreen for Flow Cytometric Anlalysis of Marine Prokaryotes," Appl. Environ. Microbiol., 62(5), 1649-1655(1996). https://doi.org/10.1128/AEM.62.5.1649-1655.1996
  9. Sungyul, L., Florian, K., Tsung-Cheng, C., Anupama, S., Beibei, C., Sushama, S., Hongtao, Y., Yang, X. and Joshua, T. M., "Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins," Cell 164, 69-80(2016). https://doi.org/10.1016/j.cell.2015.12.017
  10. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K. and Ren, Q. "Critical Aspects of Using Bacterial Cell Viabiltiy Assays with the Fluorophores SYTO9 and Propidium Iodide," BMC Microbiol., 15(36), (2015).
  11. Fujisawa, S., Romin, Y., Barlas, A., Petrovic, L. M., Turkekul, M., Fan, N., Garcia, A. R., Monette, S., Klimstra, D. S., Erinngeri, J. P., Solomon, S. B., Manova-Todorova, K. and Sofocleous, C. T., "Evaluation of YO-PRO-1 as An Early Marker of Apoptosis Following Radiofrequency Ablation of Colon Cancer Liver Metastases," Biol. Reprod., 53, 276-284(1995). https://doi.org/10.1095/biolreprod53.2.276
  12. Fried, J., Perez, A. G. and Clarkson, B. D., "Flow Cytoflorometric Analysis of Cell Cycle Distributions Using Propidium Iodide. Properties of the Method and Mathematical Analysis of the Data," J. Cell Biol., 71(1), 172-181(1976). https://doi.org/10.1083/jcb.71.1.172
  13. Fieger, A. M., Nelson, K. L., Konowalchuk, J. D. and Barreda, D. R., "Modified Annexin V/Propidium Iodide Apoptosis Assay For Accurate Assessment of Cell Death," J. Vis. Exp., 24(50), (2011).
  14. Sadik, M. M., Li, J., Shan, J. W., Shreiber, D. I. and Lin, H., "Quantification of Propidium Iodide Delivery Using Millisecond Electric Pulses: Experiments," Biochim. Biophys. Acta., 1828(4), 1322-1328(2013). https://doi.org/10.1016/j.bbamem.2013.01.002
  15. Wang, S. N. and Lee, L. J., "Micro-/nanofluidics Based Cell Electroporation," Biomicrofluidics, 7, 011301(2013). https://doi.org/10.1063/1.4774071
  16. Kim, Y. H., Kwon, S. G., Bae, S. J., Park, S. J. and Im, D. J., "Optimization of the Droplet Electroporation Method for Wild Type Chlamydomonas Reinhardtii Transformation," Bioelectrochemistry, 126, 29-37(2019). https://doi.org/10.1016/j.bioelechem.2018.11.010
  17. Kim, Y. H. and Im, D. J., "Control of the Culture Conditions of Chlymydomonas Reinhardtii for Efficient Delivery of Exogenous Materials in Electroporation," Algal Res. 35, 288-394(2018).
  18. Im, D. J., "Next Generation Digital Microfluidic Technology: Electrophoresis of Charged Droplets," Korean J. Chem. Eng., 32, 1001-1008(2015). https://doi.org/10.1007/s11814-015-0092-0
  19. Im, D. J., "Charging of an Ionic Liquid Droplet in a Dielectric Medium," Clean Technology 20, 354-358(2014). https://doi.org/10.7464/ksct.2014.20.4.354
  20. Im, D. J., Noh, J., Moon, D. and Kang, I. S., "Electrophoresis of a Charged Droplet in a Dielectric Liquid for Droplet Actuation," Anal. Chem., 83, 5168-5174(2011). https://doi.org/10.1021/ac200248x
  21. Im, D. J., Ahn, M. M., Yoo, B. S., Moon, D., Lee, D. W. and Kang, I. S., "Discrete Electrostatic Charge Transfer by the Electrophoresis of a Charged Droplet in a Dielectric Liquid," Langmuir, 28, 11656-11661(2012). https://doi.org/10.1021/la3014392
  22. Im, D. J., Yoo, B. S., Ahn, M. M., Moon, D. and Kang, I. S., "Digital Electrophoresis of Charged Droplets," Anal. Chem., 85, 4038-4044 (2013). https://doi.org/10.1021/ac303778j
  23. Ahn, M. M., Im, D. J. and Kang, I. S., "Geometric Characterization of Optimal Electrode Designs for Improved Droplet Charging and Actuation," Analyst, 138, 7362-7368(2013). https://doi.org/10.1039/c3an01623d
  24. Lee, D. W., Im, D. J. and Kang, I. S., "Measurement of the Interfacial Tension in an Ionic Liquid-Dielectric Liquid System Using an Electrically Deformed Droplet," J. Phys. Chem. C., 117, 3426-3430(2013). https://doi.org/10.1021/jp312212e
  25. Ahn, M. M., Im, D. J., Kim, J. G., Lee, D. W. and Kang, I. S., "Extraction of Cations from an Ionic Liquid Droplet in a Dielectric Liquid under Electric Field," J. Phys. Chem. Lett., 5, 3021-3025(2014). https://doi.org/10.1021/jz501511z
  26. Ahn, M. M., Im, D. J., Yoo, B. S. and Kang, I. S., "Characterization of Electrode Alignment for Optimal Droplet Charging and Actuation in Droplet-based Microfluidic System," Electrophoresis, 36, 2086-2093(2015). https://doi.org/10.1002/elps.201500141
  27. Choi, C. Y. and Im, D. J., "Contact Charging and Electrphoresis of a Glassy Carbon Microsphere," Korean Chem. Eng. Res., 54(4), 568-573(2016). https://doi.org/10.9713/kcer.2016.54.4.568
  28. Im, D. J., Jeong, S.-N., Yoo, B. S., Kim, B., Kim, D.-P., Jeong, W.-J. and Kang, I. S., "Digital Microfluidic Approach for Efficient Electroporation with High Productivity: Transgene Expression of Microalgae without Cell Wall Removal," Anal. Chem., 87, 6592-6599(2015). https://doi.org/10.1021/acs.analchem.5b00725
  29. Kurita, H., Takahashi, S., Asada, A., Matsuo, M., Kishikawa, K., Mizuno, A. and Numano, R., "Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor," PLOS ONE 10, e0144254(2015). https://doi.org/10.1371/journal.pone.0144254
  30. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res., 48(5), 545-555(2010).
  31. Im, D. J. and Jeong, S.-N., "Transfection of Jurkat T Cells by Droplet Electroporation," Biochem. Eng. J., 122, 133-140(2017). https://doi.org/10.1016/j.bej.2017.03.010
  32. Saulis, G., Lape, R., Praneviciute, R. and Mickevicius, D., "Changes of the Solution pH Due to Exposure by High-voltage Electric Pulses," Bioelectrochemistry, 67, 101-108(2005). https://doi.org/10.1016/j.bioelechem.2005.03.001