• Title/Summary/Keyword: p53 activation

Search Result 321, Processing Time 0.027 seconds

The Effects of Proprioceptive Neuromuscular Facilitation Leg Patterns on the Muscle Activation of Neck Flexors (고유수용성신경근촉진법 중 하지패턴이 경부 굴곡근 근활성도에 미치는 영향)

  • Lee, Moon-Kyu;Kim, Jong-Man;Park, Hyung-Ki;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • The aim of the present study was to determine the effect of proprioceptive neuromuscular facilitation (PNF) leg patterns on the muscle activation of neck flexors. Twenty healthy subjects participated in this study. Each subject performed bilateral asymmetrical PNF leg patterns against manual resistance under four conditions: through the full range of motion toward the right side, left side, and the end range in the right side, left side. Electromyographic (EMG) data was collected from the sternocleidomastoid (SCM) muscles as neck flexors. The root mean square (RMS) value of the SCM was measured and normalized from maximal EMG activity of the SCM. The data were analyzed using the paired t-test and repeated analysis of variance (ANOV A) was used to compare the statistical significance. The results of this study are summarized as follows: Firstly, the RMS values of SCM were significantly higher in all four PNF leg patterns than in the resting condition (p<.05). Secondly, there was no significant difference in muscle activation according to the direction of PNF leg patterns (p>.05). Thirdly, there was no significant difference in muscle activation according to the point of range of the motion of leg patterns (p>.05). It is suggested that PNF bilateral asymmetrical leg patterns have a considerable effect on muscle activation of the SCM, regardless of the range of motion and direction of PNF bilateral asymmetrical leg patterns.

  • PDF

Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas (Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구)

  • Hong, Sung-Min;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • The chlorination kinetics of synthetic rutile prepared by selective chlorination of ilmenite with Cl2 and CO gas mixture were studied in a fluidized bed. Th e effects of reaction temperature, reaction time, and the ratio of Cl2 and CO partial pressure ($p_{Cl_2}/p_{CO}$) on the conversion rate of TiCl4 were investigated. The conversion rate of TiC4 was low under the high $p_{Cl_2}/p_{CO}$ conditions. Moreover, it was considered that the partial pressure of CO gas was more effective than that of Cl2 gas when comparing the stoichiometric conversion rate and experimental results of high CO partial pressure. Considering the porous structure of particles, the rate controlling step of the chlorination of synthetic rutile was determined to be chemical reaction and the activation energy was calculated as 53.77 kJ/mol.

The Effect of Brunfelsia grandiflora Ethanol Extract on the Induction of Autophagy in Human Lung Fibroblasts (사람 폐 섬유아 세포에서 Brunfelsia grandiflora 에탄올 추출물이 Autophagy에 미치는 영향)

  • Nam, Hyang;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.24 no.8
    • /
    • pp.837-842
    • /
    • 2014
  • The purpose of this study was to investigate the effect of Brunfelsia grandiflora ethanol extract (BGEE) on the induction of autophagy via regulation of SIRT1 expression and p53 activation in a human lung fibroblast cell line, IMR 90. BGEE at a concentration of $5{\mu}g/ml$ or more exhibited a cytotoxic effect on IMR 90 cells. For the first time, this study showed that BGEE induces autophagy in normal human lung fibroblasts. BGEE also increased the expression level of beclin-1 at $2.5{\mu}g/ml$ or less and Atg7 at $5{\mu}g/ml$, both of which are known to be involved in the induction of autophagy. In addition, BGEE modulated the expression of other proteins related to autophagy in normal human lung fibroblasts. The expression levels of p53 and p-p53, an active form of p53, were decreased in the presence of BGEE at a noncytotoxic concentration. In contrast, the expression level of SIRT1 was increased in human lung fibroblasts treated with BGEE at a noncytotoxic concentration. Moreover, SA-${\beta}$-Gal staining, an aging marker, was reduced in the normal human lung fibroblasts treated with BGEE. These findings suggest that BGEE promotes the induction of autophagy and antiaging through the modulation of p53 and SIRT1 in human lung fibroblasts.

Relationship between Radiation Induced Activation of DNA Repair Genes and Radiation Induced Apoptosis in Human Cell Line A431 (인체세포주 A431에서 방사선 조사 후 DNA수선 유전자 발현과 세포고사와의 관계에 관한 연구)

  • Bom, Hee-Seung;Min, Jung-Jun;Choi, Keun-Hee;Kim, Kyung-Keun
    • The Korean Journal of Nuclear Medicine
    • /
    • v.34 no.2
    • /
    • pp.144-153
    • /
    • 2000
  • Purpose: The purpose of this study was to evaluate the relationship between radiation-induced activation of DNA repair genes and radiation induced apoptosis in A431 cell line. Materials and Methods: Five and 25 Gys of gamma radiation were given to A431 cells by a Cs-137 cell irradiator. Apoptosis was evaluated by flow cytometry using annexin V-fluorescein isothiocyanate and propidium iodide staining. The expression of DNA repair genes was evaluated by both Northern and Western blot analyses. Results: The number of apoptotic cells increased with the increased radiation dose. It increased most significantly at 12 hours after irradiation. Expression of p53, p21, and hRAD50 reached the highest level at 12 hours after 5 Gy irradiation. In response to 25 Gy irradiation, hRAD50 and p21 were expressed maximally at 12 hours, but p53 and GADD45 genes showed the highest expression level after 12 hours. Conclusion: Induction of apoptosis and DNA repair by ionizing radiation were closely correlated. The peak time of inducing apoptosis and DNA repair was 12 hours in this study model. hRAD50, a recently discovered DNA repair gene, was also associated with radiation-induced apoptosis.

  • PDF

Tissue Transglutaminase is Not Involved in the Aggregate Formation of Stably Expressed $\alpha$-Synuclein in SH-SY5Y Human Neuroblastoma Cells

  • Suh, Myung-Duk;Park, Chang-Ha;Kim, Sung-Soo;Kil, Myeng-Og;Lee, Geon-Hee;Johnson, Gail V. W.;Chun, Wan-Joo
    • Archives of Pharmacal Research
    • /
    • v.27 no.8
    • /
    • pp.850-856
    • /
    • 2004
  • Intraneuronal deposition containing $\alpha$-synuclein is implicated in the pathogenesis of synuclein-opathies including Parkinsons disease (PD). Although it has been demonstrated that cytoplas-mic inclusions of wild type $\alpha$-synuclein are observed in the brain of PD patients and that $\alpha$-synuclein mutations such as A30P and A53T accelerate aggregate formation, the exact mech-anism by which $\alpha$-synuclein forms insoluble aggregates is still controversial. In the present study, to understand the possible involvement of tissue transglutaminase (tTG) in aggregate formation of $\alpha$-synuclein, SH-SY5Y cell lines stably expressing wild type or mutant (A30P or A53T) $\alpha$-synuclein were created and aggregate formation of $\alpha$-synuclein was observed upon activation of tTG. The data demonstrated that $\alpha$-synuclein negligibly interacted with tTG and that activation of tTG did not result in the aggregate formation of $\alpha$-synuclein in SH-SY5Y cells overexpressing either wild type or mutant $\alpha$-synuclein. In addition, $\alpha$-synuclein was not modi-fied by activated tTG in situ. These data suggest that tTG is unlikely to be a contributing factor to the formation of aggregates of $\alpha$-synuclein in a stable cell model.

The Mechanism of t-Butylhydroperoxide-Induced Apoptosis in IMR-32 Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo;Huh, Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 1999
  • Apoptosis has been implicated in the pathophysiological mechanisms of various neurodegenerative diseases. In a variety of cell types, oxidative stress has been demonstrated to play an important role in the apoptotic cell death. However, the exact mechanism of oxidative stress-induced apoptosis in neuronal cells is not known. In this study, we induced oxidative stress in IMR-32 human neuroblastoma cells with tert- butylhydroperoxide (TBHP), which was confirmed by significantly reduced glutathione content and glutathione reductase activity, and increased glutathione peroxidase activity. TBHP induced decrease in cell viability and increase in DNA fragmentation, a hallmark of apoptosis, in a dose-dependent manner. TBHP also induced a sustained increase in intracellular $Ca^{2+}$ concentration, which was completely prevented either by EGTA, an extracellular $Ca^{2+}$ chelator or by flufenamic acid (FA), a non-selective cation channel (NSCC) blocker. These results indicate that the TBHP-induced intracellular $Ca^{2+}$ increase may be due to $Ca^{2+}$ influx through the activation of NSCCs. In addition, treatment with either an intracellular $Ca^{2+}$ chelator (BAPTA/AM) or FA significantly suppressed the TBHP-induced apoptosis. Moreover, TBHP increased the expression of p53 gene but decreased c-myc gene expression. Taken together, these results suggest that the oxidative stress-induced apoptosis in neuronal cells may be mediated through the activation of intracellular $Ca^{2+}$ signals and altered expression of p53 and c-myc.

  • PDF

Cell Cycle Arrest of Extract from Artemisia annua Linné. Via Akt-mTOR Signaling Pathway in HCT116 Colon Cancer Cells (HCT116 대장암세포에서 Akt-mTOR 신호경로를 통한 개똥쑥 추출물 (AAE)의 세포주기 억제 효과)

  • Kim, Bo Min;Kim, Guen Tae;Lim, Eun Gyeong;Kim, Eun Ji;Kim, Sang Yong;Ha, Sung Ho;Kim, Young Min
    • KSBB Journal
    • /
    • v.30 no.5
    • /
    • pp.223-229
    • /
    • 2015
  • In this study, extract from Artemisia annua in L. (AAE) is known as a medicinal herb that is effective against cancer. The cell cycle is regulated by the activation of cyclin-dependent kinase (CDK)/cyclin complex. We will focus on regulation of CDK2 by cyclin E. cyclin E is associated with CDK2 to regulate progression from G1 into S phase. Akt is known to play an important role in cell proliferation and cell survival. Activation of Akt increases mTOR activity that promotes cell proliferation and cancer growth. In this study, we investigated that AAE-induced cell cycle arrest at G1/S phase in HCT116 colon cancer. Treatment of AAE shows that reduced activation of Akt decreases mTOR/Mdm2 activity and then leads to increase the activation of p53. The active p53 promotes activation of p21. p21 induces inactivation of CDK2/cyclin E complex and occurs cell cycle arrest at G1/S phase. We treated LY294002 (Akt inhibitor) and Rapamycin (mTOR inhibitor) to know the relationship between the signal transduction of proteins associated with cell cycle arrest. These results suggest that AAE induces cell cycle arrest at G1/S phase by Akt/mTOR pathway in HCT116 colon cancer cell.

Apoptotic Effects of Cordycepin Through the Extrinsic Pathway and p38 MAPK Activation in Human Glioblastoma U87MG Cells

  • Baik, Ji-Sue;Mun, Seo-Won;Kim, Kyoung-Sook;Park, Shin-Ji;Yoon, Hyun-Kyoung;Kim, Dong-Hyun;Park, Min-Kyu;Kim, Cheorl-Ho;Lee, Young-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.309-314
    • /
    • 2016
  • We first demonstrated that cordycepin inhibited cell growth and triggered apoptosis in U87MG cells with wild-type p53, but not in T98G cells with mutant-type p53. Western blot data revealed that the levels of procaspase-8, -3, and Bcl-2 were downregulated in cordycepin-treated U87MG cells, whereas the levels of Fas, FasL, Bak, cleaved caspase-3, -8, and cleaved PARP were upregulated, indicating that cordycepin induces apoptosis by activating the death receptor-mediated pathway in U87MG cells. Cordycepin-induced apoptosis could be suppressed by only SB203580, a p38 MAPK-specific inhibitor. These results suggest that cordycepin triggered apoptosis in U87MG cells through p38 MAPK activation and inhibition of the Akt survival pathway.

Naphthoquinone Analog-induced G1 Arrest is Mediated by cdc25A Inhibition and p53-independent p21 Induction in Human Hepatocarcinoma Cells

  • Kim, Won-Ho;Kim, Jung-Woong;Jang, Sang-Min;Song, Ki-Hyun;Ham, Seung-Wook;Choi, Kyung-Hee
    • Animal cells and systems
    • /
    • v.11 no.1
    • /
    • pp.9-15
    • /
    • 2007
  • The naphthoquinone analog (2,3-dichloro-6,9-dihydroxy-1,4-naphtoquinone, NA) has an inhibitory effect on cdc25A protein phosphatase in vitro, which is responsible for G1/S transition during cell cycle. However, the exact mechanism inducing the growth inhibition is not understood. In this study, we investigated the regulatory mechanisms of growth arrest induced by NA, as a new potent inhibitor of cdc25A phosphatase, in human hepatocarcinoma SK-hep-1 cells. We found that NA induced the G1 arrest by perturbation of protein tyrosine dephosphorylation of Cdk2, which may be resulting from inhibition of cdc25A phosphatase. In addition, p21 was expressed in a p53-independent manner and participated in the NA-induced G1 arrest by inhibiting Cdk2 activity. Although the exact mechanism is not known, the p21 expression might be related to MAPK activation. From these results, we suggest that NA induces G1 arrest via inhibition of cdc25A and induction of p53-independent p21 expression in SK-Hep-1 cells.

Comparison of the Foot Muscle EMG and Medial Longitudinal Arch Angle During Short Foot Exercises at Different Ankle Position

  • Yoon, Hyeo-bin;Kim, Ji-hyun;Park, Joo-hee;Jeon, Hye-seon
    • Physical Therapy Korea
    • /
    • v.24 no.4
    • /
    • pp.46-53
    • /
    • 2017
  • Background: The MLA is supported by both the abductor hallucis (ABH) and the extrinsic muscles. Insufficient muscular support may lower the MLA when the body's weight is applied to the foot. The short foot exercise (SFE) is effective in increasing the height of the MLA for people with flat feet. Most of the research related to the SFE has simply evaluated the efficiency of the exercise using enhanced ABH electromyography (EMG) activation. Since the tibialis anterior (TA), peroneus longus (PER), and ABH are all involved in supporting the MLA, a new experiment design examining the EMG of the selected muscles during SFE should be applied to clarify its effect. Objects: Therefore, this study aimed to clarify the effect of the SFE in different ankle position on the MLA angle and the activation of both the intrinsic and extrinsic muscles and to determine the optimal position. Methods: 20 healthy subjects and 12 subjects with flat feet were recruited from Yonsei University. The surface EMG and camera were used to collect muscle activation amplitude of TA, PER, and ABH and to capture the image of MLA angle during SFE. The subjects performed the SFE while sitting in three different ankle positions-neutral (N), dorsiflexion (DF) at 30 degrees, and plantar flexion (PF) at 30 degrees. Results: ABH EMG amplitudes were significantly greater in N and DF than in PF (p<.05). Muscle activation ratio of TA to ABH was the lowest in PF (p<.05). MLA angle in both groups significantly decreased in PF (p<.01). The TA and ABH was activated at the highest level in DF. However, in PF, subjects significantly activated the ABH and PER with relatively low activation of TA. Conclusion: Therefore, researchers need to discuss which SFE condition most effectively use the arch support muscle for flat foot.