• Title/Summary/Keyword: p53 activation

Search Result 321, Processing Time 0.028 seconds

Inhibition of Apoptosis by Nitric Oxide in MCF-7 Cells (유방암 세포(MCF-7)에서 nitric oxide에 의한 apoptosis 억제)

  • Kim, Kyun-Ha;Roh, Sang-Geun;Park, Hae-Ryun;Choi, Won-Chul
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.157-162
    • /
    • 2009
  • Nitric oxide (NO) is a diffusible, multifunctional and transcellular messenger that has been implicated in numerous physiological and pathological conditions. It has been reported that NO induced apoptosis in tumor cells, macrophage cells and inhibited apoptosis in normal cells, endothelial cells. To examine whether NO could induce apoptosis in MCF-7 cells, cells were treated with SIN-1 (3-morpholinosydnonimine), NO donor. Cell viability did not change in SIN-1 treated cells for 48 h and there was no significantly changes in cell cycle progression or growth pattern by FACS analysis. But p53 protein, an apoptosis-related factor, increased SIN-1 treatment time dependently. Bcl-2, MDM2 and p21 were also accumulated. Bax level did not change. A major role of inhibiting apoptosis by NO in MCF-7 cells, cobalt chloride ($CoCl_2$) was added to cells preincubated with SIN-1. Whereas $CoCl_2$ treated cells underwent apoptosis, for 24 h SIN-1 preincubated cells were not induced apoptosis. Inactivated proteins, MDM2 and bcl-2, by $CoCl_2$ levels also increased in SIN-1 pre-treated cells. These results suggested that SIN-1 blocked p53 by MDM2 activation and inhibited apoptosis by inducing p21 and bcl-2 expression.

Interaction of genetic background and exercise training intensity on endothelial function in mouse aorta

  • Kim, Seung Kyum;Avila, Joshua J.;Massett, Michael P.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.1
    • /
    • pp.53-68
    • /
    • 2020
  • The purpose of this study was to characterize the genetic contribution to endothelial adaptation to exercise training. Vasoreactivity was assessed in aortas from four inbred mouse strains (129S1, B6, NON, and SJL) after 4 weeks of moderate intensity continuous exercise training (MOD), high intensity interval training (HIT) or in sedentary controls (SED). Intrinsic variations in endothelium-dependent vasorelaxation (EDR) to acetylcholine (ACh) as well as vasocontractile responses were observed across SED groups. For responses to exercise training, there was a significant interaction between mouse strain and training intensity on EDR. Exercise training had no effect on EDR in aortas from 129S1 and B6 mice. In NON, EDR was improved in aortas from MOD and HIT compared with respective SED, accompanied by diminished responses to PE in those groups. Interestingly, EDR was impaired in aorta from SJL HIT compared with SED. The transcriptional activation of endothelial genes was also influenced by the interaction between mouse strain and training intensity. The number of genes altered by HIT was greater than MOD, and there was little overlap between genes altered by HIT and MOD. HIT was associated with gene pathways for inflammatory responses. NON MOD genes showed enrichment for vessel growth pathways. These findings indicate that exercise training has non-uniform effects on endothelial function and transcriptional activation of endothelial genes depending on the interaction between genetic background and training intensity.

Cell Cycle Arrest and Cytochrome c-mediated Apoptotic Induction in A549 Human Lung Cancer Cells by MCS-C2, an Analog of Sangivamycin

  • Kang, Jeong-Hwa;Lee, Dong-Keun;Lee, Chul-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.433-437
    • /
    • 2010
  • In the course of screening for novel modulators of cell cycle progression and apoptosis as anticancer drug candidates, we generated an analog of sangivamycin, MCS-C2, which was elucidated as 4-amino-6-bromo-7-cyclopentyl-7H-pyrrolo[2,3-d]pyrimidine-5-carboxamide. In the present study, we evaluated the molecular mechanisms of MCSC2-induced cell cycle arrest and apoptosis in A549 human lung cancer cells. To investigate the effects of MCS-C2 on cell cycle progression in A549 cells, we measured the DNA content of A549 cells treated with $5\;{\mu}M$ MCS-C2 using flow cytometry. The analysis revealed an appreciable $G_2$ phase arrest in treated cells. This event was associated with significant upregulation of p53 and $p21^{Cip1}$. In addition, the TUNEL assay was used to examine apoptotic induction in treated cells, and the effects of MCS-C2 on the expression of apoptosis-associated proteins were examined by Western blot. Apoptotic induction in MCS-C2-treated A549 cells was associated with cytochrome c release from mitochondria, which in turn resulted in the activation of caspase-9 and -3 and the cleavage of poly(ADP-ribose) polymerase (PARP). Based on these results, we conclude that MCS-C2 is a candidate therapeutic agent for the treatment of human lung cancer via upregulation and activation of p53.

The Inhibitory Effects of Bee Venom and Melittin on the Proliferation of Vascular Smooth Muscle Cells

  • Ha, Seong-Jong;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.139-157
    • /
    • 2006
  • In the present study, I have investigated the bee venom (BV) and melittin (a major component of BV) -mediated anti-proliferative effects, and defined its mechanisms of action in cultured rat aortic vascular smooth muscle cells (VSMCs). BV and melittin $(0.4{\sim}0.8\;{\mu}g/ml)$ effectively inhibited 50 ng/ml platelet derived growth factor BB (PDGF-BB)-induced VSMCs proliferations. The regulation of apoptosis has attracted much attention as a possible means of eliminating excessively proliferating VSMCs. In the present study, the treatment of BV and melittin strongly induced apoptosis of VSMCs. I examined the effects on $NF-{\kappa}B$ activation to investigate a possible mechanism for anti-proliferative effects of BV and melittin, the PDGF-BB-induced $I{\kappa}B{\alpha}$ phosphorylation and its degradation were potently inhibited by melittin, and DNA binding activity and nuclear translocation of $NF-{\kappa}B$ p50 subunit in response to the action of PDGF-BB were potently attenuated by melittin. In further investigations, melittin markedly inhibited the PDGF-BB-induced phosphorylation of Akt but not ERK1/2, upstream signals of $NF-{\kappa}B$. Treatment of melittin also potently induced pro-apoptotic protein p53, Bax, and caspase-3 expression, but decreased anti-apoptotic protein Bcl-2 expression. These results suggest that the anti-proliferative effects of BV and melittin in VSMCs through induction of apoptosis via suppressions of $NF-{\kappa}B$ and Akt activation, and enhancement of apoptotic signal pathway. Based on these results, BV acupuncture can be a candidate as a therapeutic method for restenosis and atherosclerosis.

  • PDF

A Study on the Oxidation Characteristics of p-Cresol on Pt Anode (백금전극(白金電極)에 의한 파라크레졸의 양극전해(陽極電解) 산화특성(酸化特性))

  • Kim, Hong-Soo;Nam, Jeong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.47-53
    • /
    • 1990
  • The electrochemical oxidation behavior of p-cresol on platinum anode had been investigated by cyclic voltammetric method for the variation of concentration, scan rate of potential, temperature and pH of electrolyte. The oxidation potential of p-cresol was dependent on the electrolyte until the pH=11.5, but in basic solution over its, it was held at o.40V(vs. SCE). A diffusion was rate determining step of oxidation as irreversible reaction by the transfer atone electron. The current of peak was proportional to concentration of p-cresol until the 0.1N and optimum concentration was found to be about 0.1N. The activation energy was calculated for 5.8kcal/mol from the plot of log $I_l$ vs. 1/T.

Expression of $p21^{WAFl/Cip1}$ by $TGF-{\beta}$ Requires ERK Signaling Pathway

  • Kim, Yong-Kee;Bae, Gyu-Un;Cho, Eun-Jung;Lee, Hoi-Young;Lee, Hyang-Won;Han, Jeung-Whan
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.152.2-153
    • /
    • 2003
  • ${\beta}Although$ it has been demonstrated that $p2l^{WAFl/Cip1}$, a well known cell cycle inhibitor, could be induced by $TGF-{\beta}$ in a p53-independent manner, the detailed signal transduction pathways still remain poorly understood. In this study, we show that ERK is required for $TGF-{\beta}$ induction of $p21^{WAF1/Cip1}$, but JNK or p38 MAPK is not. ERK activation by $TGF-{\beta}$ significantly attenuated by treatment with ROS scavenger such as NAC or catalase, indicating that ROS, mainly $H_2O_2$, generation by $TGF-{\beta}$ might stimulate ERK signaling pathway to require the induction of $p21^{WAF1/Cip1}$. (omitted)

  • PDF

Mutantional analysis of tumor suppressor gene p53 in human oral squamous carcinoma cell line YD-9

  • Min, Ji-Hak;Kim, Do-Kyun;Lee, Moo-Hyung;Bae, Moon-Kyoung;Um, Kyung-Il;Kwak, Hyun-Ho;Park, Bong-Soo;Kim, Gyoo-Cheon
    • International Journal of Oral Biology
    • /
    • v.32 no.2
    • /
    • pp.79-84
    • /
    • 2007
  • Oral squamous carcinoma (OSC) is the most common malignant neoplasm of the oral mucosa. Although the etiology of OSC is not fully understood, accumulated evidences indicate that the activation of proto-oncogenes and the inactivation of tumor suppressor genes underlie the disease development. An OSC cell line, YD-9 was newly established and characterized. However, the mutational analysis of p53 gene was not performed. Thus, in this study, the presence of mutation in the p53 gene was examined by amplification of exon-4 to -8 and subsequent DNA sequencing. Two point mutations were found in exon-4 and -6: A to G, resulting in amino acid change Tyr to Cys in exon-4, and C to G, resulting in amino acid change Gly to Arg in exon-6, respectively. Any mutation was not found in the exon-5, -7 and -8. The presented results would contribute to basic research to understand the biological mechanism of OSC using YD-9 cells.

Mitochondrial dysfunction suppresses p53 expression via calcium-mediated nuclear factor-κB signaling in HCT116 human colorectal carcinoma cells

  • Lee, Young-Kyoung;Yi, Eui-Yeun;Park, Shi-Young;Jang, Won-Jun;Han, Yu-Seon;Jegal, Myeong-Eun;Kim, Yung-Jin
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.296-301
    • /
    • 2018
  • Mitochondrial DNA (mtDNA) mutations are often observed in various cancer types. Although the correlation between mitochondrial dysfunction and cancer malignancy has been demonstrated by several studies, further research is required to elucidate the molecular mechanisms underlying accelerated tumor development and progression due to mitochondrial mutations. We generated an mtDNA-depleted cell line, ${\rho}^0$, via long-term ethidium bromide treatment to define the molecular mechanisms of tumor malignancy induced by mitochondrial dysfunction. Mitochondrial dysfunction in ${\rho}^0$ cells reduced drug-induced cell death and decreased the expression of pro-apoptotic proteins including p53. The p53 expression was reduced by activation of nuclear $factor-{\kappa}B$ that depended on elevated levels of free calcium in $HCT116/{\rho}^0$ cells. Overall, these data provide a novel mechanism for tumor development and drug resistance due to mitochondrial dysfunction.

Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast (천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과)

  • Lee, Ghang-Tai;Park, Si-Jun;Lee, Jung-No;Lee, Kwang-Sik;Kim, Dae-Sung;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

Synergistic Anticancer Effect of the Cinnamomi Cortex Ethanol Extract (CcEE) and Hyperthermia in AGS Human Gastric Cancer Cells (AGS 인체 위암세포에서 육계 에탄올 추출물(CcEE)과 온열치료의 항암 시너지 효과)

  • Park, Sun-Hyang;Ahn, Chae Ryeong;Baek, Seung Ho
    • Herbal Formula Science
    • /
    • v.27 no.1
    • /
    • pp.53-63
    • /
    • 2019
  • Objectives : In this study, we investigated the combination effects of Cinnamomi cortex Ethanol Extract (CcEE) and hyperthermia in the human AGS gastric cancer cell line. Methods : AGS cells were treated with the indicated concentrations of CcEE (0, 50 or $60{\mu}g/mL$) for 1h prior to hyperthermia. And then incubated for a further 30 min at the indicated temperatures (37, 42 or $43^{\circ}C$) in a humidified incubator containing 5% $CO_2$ or a thermostatically controlled water bath for hyperthermia. The cell viability was measured by MTT assay, Morphology assay and Trypan blue assay. To investigate the possible molecular signaling pathways, the activation of mitogen-activated protein kinase (MAPK) proteins (ERK, p38 and JNK) and expression of various anti-apoptotic proteins such as Caspase-3, Caspase-9, p53, Cyclin D1 and MMP-2 were assessed by Western blot analysis. In addition, Annexin V and 7-amino-actinomycin D (7-AAD) staining was performed to examine the apoptotic mechanism. Results : Combination of CcEE with hyperthermia effectively suppressed the cell viability and changed cellmorphology compared with CcEE or hyperthermia treatment alone. Combined treatment also abated the expression of Caspase-3, Caspase-9, Cyclin D1 and MMP-2. Whereas, the expression level of p53 was up-regulated by co-treatment. Moreover, combination treatment enhanced phosphorylation of ERK, p38 and JNK. In addition, this combination increased anti-cancer effect by inducing cell death through the apoptosis. Conclusions : Taken together, all these findings suggest that the combination treatment with CcEE and hyperthermia may have therapeutic potential as a promising approach to patients with stomach cancer.