• Title/Summary/Keyword: p38 MAPK pathway

Search Result 256, Processing Time 0.022 seconds

The Antimicrobial Peptide CopA3 Inhibits Clostridium difficile Toxin A-Induced Viability Loss and Apoptosis in Neural Cells

  • Yoon, I Na;Hwang, Jae Sam;Lee, Joon Ha;Kim, Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • Numerous studies have reported that enteric neurons involved in controlling neurotransmitter secretion and motility in the gut critically contribute to the progression of gut inflammation. Clostridium difficile toxins, which cause severe colonic inflammation, are also known to affect enteric neurons. Our previous study showed that C. difficile toxin A directly induces neural cell toxicities, such as viability loss and apoptosis. In the current study, we attempted to identify a potent inhibitor of toxin A-induced neural cell toxicity that may aid in managing toxin A-induced gut inflammation. In our recent study, we found that the Korea dung beetle-derived antimicrobial peptide CopA3 completely blocked neural cell apoptosis caused by okadaic acid or 6-OHDA. Here, we examined whether the antimicrobial peptide CopA3 inhibited toxin A-induced neural cell damage. In neuroblastoma SH-SY5Y cells, CopA3 treatment protected against both apoptosis and viability loss caused by toxin A. CopA3 also completely inhibited activation of the pro-apoptotic factor, caspase-3. Additionally, CopA3 rescued toxin A-induced downregulation of neural cell proliferation. However, CopA3 had no effect on signaling through ROS/p38 $MAPK/p27^{kip1}$, suggesting that CopA3 inhibits toxin A-induced neural cell toxicity independent of this well-characterized toxin A pathway. Our data further suggest that ability of CopA3 to rescue toxin A-induced neural cell damage may also ameliorate the gut inflammation caused by toxin A.

NDRG2-mediated Modulation of SOCS3 and STAT3 Activity Inhibits IL-10 Production

  • Lee, Eun-Byul;Kim, Ae-Yung;Kang, Kyeong-Ah;Kim, Hye-Ree;Lim, Jong-Seok
    • IMMUNE NETWORK
    • /
    • v.10 no.6
    • /
    • pp.219-229
    • /
    • 2010
  • Background: N-myc downstream regulated gene 2 (NDRG2) is a member of the NDRG gene family. Our previous report indicated a possible role for NDRG2 in regulating the cytokine, interleukin-10 (IL-10), which is an important immunosuppressive cytokine. Several pathways, including p38-MAPK, NF-${\kappa}B$, and JAK/STAT, are used for IL-10 production, and the JAK/STAT pathway can be inhibited in a negative feedback loop by the inducible protein, SOCS3. In the present study, we investigated the effect of NDRG2 gene expression on IL-10 signaling pathway that is modulated via SOCS3 and STAT3. Methods: We generated NDRG2-overexpressing U937 cell line (U937-NDRG2) and treated the cells with PMA to investigate the role of NDRG2 in IL-10 production. U937 cells were also transfected with SOCS3- or NDRG2-specific siRNAs to examine whether the knockdown of SOCS3 or NDRG2 influenced IL-10 expression. Lastly, STAT3 and SOCS3 induction was measured to identify the signaling pathway that was associated with IL-10 production. Results: RT-PCR and ELISA assays showed that IL-10 was increased in U937-mock cells upon stimulation with PMA, but IL-10 was inhibited by overexpression NDRG2. After PMA treatment, STAT3 phosphorylation was decreased in a time-dependent manner in U937-mock cells, whereas it was maintained in U937-NDRG2 cells. SOCS3 was markedly reduced in U937-NDRG2 cells compared with U937-mock cells. IL-10 production after PMA stimulation was reduced in U937 cells when SOCS3 was inhibited, but this effect was less severe when NDRG2 was inhibited. Conclusion: NDRG2 expression modulates SOCS3 and STAT3 activity, eventually leading to the inhibition of IL-10 production.

Inhibitory Effect of the Ethanol Extract of a Rice Bran Mixture Comprising Angelica gigas, Cnidium officinale, Artemisia princeps, and Camellia sinensis on Brucella abortus Uptake by Professional and Nonprofessional Phagocytes

  • Hop, Huynh Tan;Arayan, Lauren Togonon;Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Baek, Eun Jin;Min, WonGi;Lee, Hu Jang;Lee, Chun Hee;Rhee, Man Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.10
    • /
    • pp.1885-1891
    • /
    • 2017
  • In this study, we evaluated the inhibitory effect of a rice bran mixture extract (RBE) on Brucella abortus pathogenesis in professional (RAW 264.7) and nonprofessional (HeLa) phagocytes. We fermented the rice bran mixture and then extracted it with 50% ethanol followed by gas chromatography-mass spectrometry to identify the components in RBE. Our results clearly showed that RBE caused a significant reduction in the adherence of B. abortus in both cell lines. Furthermore, analysis of phagocytic signaling proteins by western blot assay revealed that RBE pretreatment resulted in inhibition of phosphorylation of JNK, ERK, and p38, leading to decline of internalization compared with the controls. Additionally, the intensity of F-actin observed by fluorescence microscopy and FACS was remarkably reduced in RBE-pretreated cells compared with control cells. However, the intracellular replication of B. abortus within phagocytes was not affected by RBE. Taken together, these findings suggest that the phagocytic receptor blocking and suppressive effects of RBE on the MAPK-linked phagocytic signaling pathway could negatively affect the invasion of B. abortus into phagocytes.

Effects and molecular mechanisms of Noemyeong-san, a novel herbal prescription for treating Alzheimer's disease on microglia (미세아교세포에서 알츠하이머형 치매 치료 처방인 뇌명산(腦明散)의 효능 및 기전연구)

  • Han, Sangtae;Jeong, Ji-Cheon
    • Herbal Formula Science
    • /
    • v.25 no.4
    • /
    • pp.471-481
    • /
    • 2017
  • Objectives : Noemyeong-san (NMS) is a novel herbal prescription composed of five oriental medicinal herbs including Prunellae Spica, Betulae Cortex, Foeniculi Fructus, Asiasari Radix, and Clematidis Radix for treating Alzheimer's disease. In the present study, we investigated the effects and molecular mechanisms of NMS on BV2 microglia to evaluate the potential action of this formula for preventing or treating neurodegenerative disease such as Alzheimer's disease. Methods : To determine the cytotoxicity of NMS on BV2 microglia, the MTT assay was performed. The effects of NMS on lipopolysaccharide (LPS)-stimulated BV2 microglia were determined with a nitric oxide (NO) assay and western blots for inflammatory mediator-related proteins, mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-${\kappa}B$) pathway-related proteins, and heme oxygenase-1 (HO-1). Result : NMS inhibited induction of iNOS and COX-2 as well as NO production without affecting the cell viability in LPS-stimulated BV2 microglia. NMS also suppressed activation of ERK and p38 MAPK among main kinases of MAPKs as well as NF-${\kappa}B$ by LPS stimulation. Furthermore, NMS dose-dependently induced the expression of HO-1 and the inhibitory effect of NMS on the production of NO were blocked by pretreatment with an HO-1 inhibitor, Snpp. Conclusions : These results demonstrate that NMS has potent anti-neuroinflammatory effect on the LPS-stimulated microglia. These findings provide evidences for NMS to be considered as a new prescription for preventing or treating neurodegenerative disease such as Alzheimer's disease.

Safflower Seed Oil and Its Active Compound Acacetin Inhibit UVB-Induced Skin Photoaging

  • Jeong, Eun Hee;Yang, Hee;Kim, Jong-Eun;Lee, Ki Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.10
    • /
    • pp.1567-1573
    • /
    • 2020
  • Ultraviolet (UV) is one of the major factors harmful to skin health. Irradiation with ultraviolet accelerates the decline of skin function, causing the skin to have deep wrinkles, dryness, decreased procollagen production, and degradation of collagen. Novel materials are needed to prevent the aging of the skin by blocking the effects of UV. Safflower seed oil (Charthamus tinctorius L., SSO) contains significantly high levels of unsaturated fatty acids and phytochemicals. SSO has been traditionally used in China, Japan, and Korea to improve skin and hair. Our objective in this study was to determine the effect of SSO and its active compound acacetin on UVB-induced skin photoaging in HaCaT cells and human dermal fibroblasts (HDF). SSO inhibited UVB-induced matrix metalloproteinase-1 (MMP-1) at both protein and mRNA levels in HaCaT cells and HDF. MMP-1 is known to play important roles in collagen degradation and wrinkle formation. Acacetin, a type of flavonoid, is present in SSO. Similar to SSO, acacetin also inhibited UVB-induced MMP-1 protein and mRNA levels in HaCaT cells and HDF. MMP-1 mRNA is primarily regulated by the mitogen-activated kinase (MAPK) signaling pathway. Acacetin regulated the phosphorylation of JNK1/2 and c-jun, but did not inhibit the phosphorylation of ERK1/2, p38 and AKT. Taken together, these results indicate that SSO and its active compound acacetin can prevent UVB-induced MMP-1 expression, which leads to skin photoaging, and may therefore have therapeutic potential as an anti-wrinkle agent to improve skin health.

Lin28a attenuates TGF-β-induced renal fibrosis

  • Jung, Gwon-Soo;Hwang, Yeo Jin;Choi, Jun-Hyuk;Lee, Kyeong-Min
    • BMB Reports
    • /
    • v.53 no.11
    • /
    • pp.594-599
    • /
    • 2020
  • Lin28a has diverse functions including regulation of cancer, reprogramming and regeneration, but whether it promotes injury or is a protective reaction to renal injury is unknown. We studied how Lin28a acts in unilateral ureteral obstruction (UUO)-induced renal fibrosis following unilateral ureteral obstruction, in a mouse model. We further defined the role of Lin28a in transforming growth factor (TGF)-signaling pathways in renal fibrosis through in vitro study using human tubular epithelium-like HK-2 cells. In the mouse unilateral ureteral obstruction model, obstruction markedly decreased the expression of Lin28a, increased the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin. In TGF-β-stimulated HK-2 cells, the expression of Lin28a was reduced and the expression of renal fibrotic markers such as type I collagen, α-SMA, vimentin and fibronectin was increased. Adenovirus-mediated overexpression of Lin28a inhibited the expression of TGF-β-stimulated type I collagen, α-SMA, vimentin and fibronectin. Lin28a inhibited TGF-β-stimulated SMAD3 activity, via inhibition of SMAD3 phosphorylation, but not the MAPK pathway ERK, JNK or p38. Lin28a attenuates renal fibrosis in obstructive nephropathy, making its mechanism a possible therapeutic target for chronic kidney disease.

Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells

  • Kim, Young-Eun;Park, Jeong-A;Nam, Ki-Hoan;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.148-153
    • /
    • 2009
  • Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-${\kappa}B$. We recently reported that PDTC activates the MIP-2 gene in a NF-${\kappa}B$-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-${\kappa}B$ inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-${\kappa}B$ inhibitor PDTC should be carefully considered when it used with mouse ES cells.

Enhancing Effect of Extracts of Phellodendri Cortex on Glucose Uptake in Normal and Insulin-resistant 3T3-L1 Adipocytes (3T3-L1 지방세포에서 황백 추출물의 Glucose Uptake 촉진 및 인슐린 저항성 개선 활성)

  • Kim, So-Hui;Shin, Eun-Jung;Hyun, Chang-Kee
    • Korean Journal of Pharmacognosy
    • /
    • v.36 no.4 s.143
    • /
    • pp.291-298
    • /
    • 2005
  • Anti-hyperglycemic effects of 17 medicinal plants that have been used for ameliorating diabetes in oriental medicine were evaluated using glucose transport assay in 3T3-L1 adipocytes. Higher activities were obtained by treating water or alcohol extract of Phellodendri Cortex (PC), which showed enhancing effects both on basal and insulin-stimulated glucose uptake. The latter effect of PC was completely inhibited by wortmannin, a specific inhibitor for phosphatidyl inositol 3-kinase (PI 3-kinase), but not affected by SB203580, A specific inhibitor for p38 mitogen-activatedprotein kinase(MAPK). Genistein, an inhibitor for tyrosine kinases, abolished the PC effects completely. Treatment of vanadate, an inhibitor for tyrosine phosphatases, together with PC showed no significant synergic enhancement in glucose uptake. The results of inhibitors associated with insulin signaling pathway indicated that extracts of PC enhance glucose uptake by PI-3 kinase activation which is an upstream event for GLUT4 translocation. Antidiabetic effects of PC extract might be also due to enhanced tyrosine phosphorylation and reduced tyrosine dephosphorylation. In addition, PC accelerated insulin-stimulated glucose uptake in insulin-resistant cells, recovering the uptake level close to that of normal cells. These findings may offer a new way to utilize extracts of PC as novel anti-hyperglycemic agents.

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

Ginsenoside Rg1 from Panax ginseng enhances myoblast differentiation and myotube growth

  • Go, Ga-Yeon;Lee, Sang-Jin;Jo, Ayoung;Lee, Jaecheol;Seo, Dong-Wan;Kang, Jong-Sun;Kim, Si-Kwan;Kim, Su-Nam;Kim, Yong Kee;Bae, Gyu-Un
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.608-614
    • /
    • 2017
  • Background: Ginsenoside Rg1 belongs to protopanaxatriol-type ginsenosides and has diverse pharmacological activities. In this report, we investigated whether Rg1 could upregulate muscular stem cell differentiation and muscle growth. Methods: C2C12 myoblasts, MyoD-transfected 10T1/2 embryonic fibroblasts, and HEK293T cells were treated with Rg1 and differentiated for 2 d, subjected to immunoblotting, immunocytochemistry, or immunoprecipitation. Results: Rg1 activated promyogenic kinases, p38MAPK (mitogen-activated protein kinase) and Akt signaling, that in turn promote the heterodimerization with MyoD and E proteins, resulting in enhancing myogenic differentiation. Through the activation of Akt/mammalian target of rapamycin pathway, Rg1 induced myotube growth and prevented dexamethasone-induced myotube atrophy. Furthermore, Rg1 increased MyoD-dependent myogenic conversion of fibroblast. Conclusion: Rg1 upregulates promyogenic kinases, especially Akt, resulting in improvement of myoblast differentiation and myotube growth.