References
- Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. 2006. The new global map of human brucellosis. Lancet Infect. Dis. 6: 91e9.
- Lee JJ, Kim DH, Kim DG, Lee HJ, Min W, Rhee MH, et al. 2012. Phellinus baumii extract influences pathogenesis of Brucella abortus in phagocyte by disrupting the phagocytic and intracellular trafficking pathway. J. Appl. Microbiol. 114: 329-338.
- Arayan LT, Simborio HL, Reyes AW, Hop HT, Min W, Lee HJ, et al. 2015. The effects of red ginseng saponin fraction-A (RGSF-A) on phagocytosis and intracellular signaling in Brucella abortus infected RAW 264.7 cells. FEMS Microbiol. Lett. 362: fnv070.
- Pasquevich KA, Estein SM, Garcia-Samartino C, Zwerdling A, Coria LM, Barrionuevo P, et al. 2009. Immunization with recombinant Brucella species outer membrane protein Omp16 and Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect. Immun. 77: 436-445. https://doi.org/10.1128/IAI.01151-08
- Attele AS, Wu JA, Yuan CS. 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693. https://doi.org/10.1016/S0006-2952(99)00212-9
- Ng TB, Ling JM, Wang ZT, Cai JN, Xu GJ. 1996. Examination of coumarins, flavonoid and polysaccharopeptide for antibacterial activity. Gen. Pharmacol. 27: 1237-1240. https://doi.org/10.1016/0306-3623(95)02143-4
- Rehman SU, Chohan ZH, Gulnaz F, Supuran CT. 2005. Invitro antibacterial, antifungal and cytotoxic activities of some coumarins and their metal complexes. J. Enzyme Inhib. Med. Chem. 20: 333-340. https://doi.org/10.1080/14756360500141911
- Choi SR, Lee JH, Kim JY, Park KW, Jeong IY, Shim KH, et al. 2011. Decursin from Angelica gigas Nakai induces apoptosis in RC-58T/h/SA#4 primary human prostate cancer cells via a mitochondria-related caspase pathway. Food Chem. Toxicol. 49: 2517-2523. https://doi.org/10.1016/j.fct.2011.06.016
- Yim NH, Lee JH, Cho WK, Yang MC, Kwak DH, Ma JY. 2011. Decursin and decursinol angelate from Angelica gigas Nakai induce apoptosis via induction of TRAIL expression on cervical cancer cells. Eur. J. Integr. Med. 3: 299-307. https://doi.org/10.1016/j.eujim.2011.09.007
- Lee S, Lee YS, Jung SH, Shin KH, Kim BK, Kang SS. 2003. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch. Pharm. Res. 26: 727-730. https://doi.org/10.1007/BF02976682
- Li L, Du JK, Zou LY, Wu T, Lee YW, Kim YH. 2013. Decursin isolated from Angelica gigas Nakai rescues PC12 cells from amyloid beta-protein-induced neurotoxicity through Nrf2-mediated upregulation of heme oxygenase-1: potential roles of MAPK. Evid. Based Complement. Altern. Med. 2013: 467245.
- Lee KE, Shin JA, Hong IS, Cho NP, Cho SD. 2013. Effect of methanol extracts of Cnidium officinale Makino and Capsella bursa-pastoris on the apoptosis of HSC-2 human oral cancer cells. Exp. Ther. Med. 5: 789-792. https://doi.org/10.3892/etm.2012.871
- Choi NY, Kang SY, Kim KJ. 2015. Artemisia princeps inhibits biofilm formation and virulence-factor expression of antibioticresistant bacteria. Biomed. Res. Int. 2015: 239519.
- Farooqui A, Khan A, Borghetto I, Kazmi SU, Rubino S, Paglietti B. 2015. Synergistic antimicrobial activity of Camellia sisnensis and Juglans regia against multidrug-resistant bacteria. PLoS One 10: e0118431. https://doi.org/10.1371/journal.pone.0118431
- Pham PL, Dupont I, Roy D, Lapointe G, Cernin J. 2000. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl. Environ. Microbiol. 66: 2302-2310. https://doi.org/10.1128/AEM.66.6.2302-2310.2000
- Lauber K, Bohn E, Krober SM, Xiao Y. 2003. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113: 717-730 https://doi.org/10.1016/S0092-8674(03)00422-7
- De Bellis P, Valerio F, Sisto A, Lonigro SL, Lavermicocca P. 2010. Probiotic table olives: microbial populations adhering on olive surface in fermentation sets inoculated with the probiotic strain Lactobacillus paracasei IMPC2.1 in an industrial plant. Int. J. Food Microbiol. 140: 6-13. https://doi.org/10.1016/j.ijfoodmicro.2010.02.024
- Park JY, Hong M, Jia Q, Lee YC, Yayeh T, Hyun E, et al. 2012. Pistacia chinensis methanolic extract attenuated MAPK and Akt phosphorylations in ADP stimulated rat platelets in vitro. Evid. Based Complement. Alternat. Med. 2012: 895729.
- Hop HT, Simborio HL, Reyes AW, Arayan LT, Min W, Lee HJ, et al. 2015. Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice. FEMS Microbiol. Lett. 362: fnv003.
- Gruenheid S, Finlay BB. 2003. Microbial pathogenesis and cytoskeletal function. Nature 422: 775-781. https://doi.org/10.1038/nature01603
- Lee JJ, Kim DG, Kim DH, Simborio HL, Min W, Lee HJ, et al. 2013. Interplay between clathrin and Rab5 controls the early phagocytic trafficking and intracellular survival of Brucella abortus with HeLa cells. J. Biol. Chem. 288: 28049-28057. https://doi.org/10.1074/jbc.M113.491555
- Schorey JS, Cooper AM. 2003. Macrophage signaling upon mycobacterial infection: the MAP kinases lead the way. Cell. Microbiol. 5: 133-142. https://doi.org/10.1046/j.1462-5822.2003.00263.x
- Doyle SE, O'Connell RM, Miranda GA, Vaidya SA, Chow EK, Liu PT, et al. 2004. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199: 81-90. https://doi.org/10.1084/jem.20031237
- Lawhon SD, Maurer R, Suyemoto M, Altier C. 2002. Intestinal short-chain fatty acids alter Salmonella typhimurium invasion gene expression and virulence through BarA/SirA. Mol. Microbiol. 46: 1451-1464. https://doi.org/10.1046/j.1365-2958.2002.03268.x
- Sun Y, O'Riordan MX. 2013. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 85: 93-118.
Cited by
- Modulatory Effect of Linoleic Acid During Brucella abortus 544 Infection in Murine Macrophage RAW264.7 Cells and Murine Model BALB/c Mice vol.30, pp.5, 2020, https://doi.org/10.4014/jmb.1911.11037
- Analysis of the Antimicrobial, Cytotoxic, and Antioxidant Activities of Cnidium officinale Extracts vol.9, pp.8, 2020, https://doi.org/10.3390/plants9080988
- Tetraploidization Increases the Contents of Functional Metabolites in Cnidium officinale vol.11, pp.8, 2017, https://doi.org/10.3390/agronomy11081561