• 제목/요약/키워드: p104

Search Result 1,301, Processing Time 0.05 seconds

Specific Biodegradation of Polychlorinated Biphenyls (PCBs) Facilitated by Plant Terpenoids

  • Jung, Kyung-Ja;Eungbin kim;So, Jae-Seong;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4-dichlorobiphenyl (4,4-DCBp) and 2,2-dichlorobiphenyl (2,2-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders, Pseudomonas ((S)-(-) limonene, p-cymene and $\alpha$-terpinene) whereas Arthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4-DCBp and 2,2-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(-) limonene, p-cymene and $\alpha$-terpinene, could degrade 4,4-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(-) limonene, could also degrade 2,2-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

  • PDF

Distinctive pH Dependence and Substrate Specificity of Peptide Hydrolysis by Human Stromelysin-1 (Stromelysin-1에 의한 펩타이드 가수분해에서 pH와 기질특이성 연구)

  • ;Marianne V. Sorensen
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.210-217
    • /
    • 2000
  • A kinetic profile of the catalytic domain of stromelysin-1 (SCD) using the fluorescent peptide substrate has been determined by the stopped-flow technique. The pH profile has a pH optimum of about 5.5 with an extended shoulder above pH 7. Three pKa values, 5.0, 5.7, and 9.8 are found for the free enzyme state and two pH independent Kcat/Km values of 4.1$\times$104 M-1 s-1 and 1.4$\times$104 M-1 s-1 at low and high pH, respectively. The profile is quite different in shape with other MMP family which has been reported, having broad pH optimum with two pKa values. The substrate specificity of SCD towards fluorescent heptapeptide substrates has been also examined by thin layer chromatography. The cleavage sites of the substrates have been identified using reverse-phase HPLC method.SCD cleaves Dns-PLA↓L↓WAR and Dns-PLA↓L↓FAR at two positions. However, the Dns-PLA↓LRAR, Dns-PLE↓LFAR, adn Dns-PLSar↓LFAR are cleaved exclusively at one bond. The double cleavages of Dns-PLALWAR and Dns-PLALFAR by SCD are in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis agrees with the structural data that the S1' pocket of SCD is deeper than that of matriysin. The differences observed between SCD and matrilysin may form the basis of understanding the structural relationships and substrate specificities of the MMP family in vivo.

  • PDF

Substrate chain-length specificities of polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa P-5 (Pseudomonas aeruginosa P-5에 존재하는 polyhydroxyalkanoate synthase PhaC1과 PhaC2의 기질특이성)

  • Woo, Sang Hee;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.455-462
    • /
    • 2016
  • Pseudomonas aeruginosa P-5 is an unusual organism capable of synthesizing polyhydroxyalkanoates (PHAs) consisting of 3-hydroxyvalerate (3HV) and medium-chain-length (MCL) 3-hydroxyalkanoate (3HA) monomer units when C-odd alkanoic acids are fed as the sole carbon source. Evaluation of the substrate chain-length specificity of two P. aeruginosa P-5 PHA synthases ($PhaC1_{P-5}$ and $PhaC2_{P-5}$) by heterologous expression of $PhaC1_{P-5}$ and $PhaC2_{P-5}$ genes in Pseudomonas putida GPp104 revealed that $PhaC2_{P-5}$ incorporates both 3HV and MCL 3HAs into PHA, whereas $PhaC1_{P-5}$ favors only MCL 3HAs for polymerization. In order to obtain $PhaC2_{P-5}$ mutants with altered substrate specificity, site-specific mutagenesis for $PhaC2_{P-5}$ was conducted. Amino acid substitutions of $PhaC2_{P-5}$ at two positions (Ser326Thr and Gln482Lys) were very effective for synthesizing copolymers with a higher 3HV fraction. When recombinant P. putida GPp104 harboring double mutated $phaC2_{P-5}$ gene ($phaC2_{P-5}QKST$) was grown on nonanoic acid, 2.5-fold increase of copolymer content with 3.8-fold increase of 3HV fraction was observed. The $phaC2_{P-5}QKST$-containing Ralstonia eutropha PHB-4 supplemented with valeric acid also produced copolymers consisting of 3HV and 3-hydroxyheptanoate with a high 3HV fraction. These results suggest that recombinants containing $phaC2_{P-5}QKST$ could be useful for production of new PHA copolymers with improved material properties.

The Status of Guanine Nucleotides in Taxol-Stabilized Microtubules Probed by 31P CPMAS NMR Spectroscopy

  • Ferdous, Taslima;Lee, Sang-Hak;Yeo, Kwon-Joo;Paik, Youn-Kee
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.104-114
    • /
    • 2011
  • Rapid exchange and hydrolysis of the tubulin-bound guanine nucleotides have been known to govern the dynamics of microtubules. However, the instability and low concentration have made it difficult for the microtubule-bound GTP to be observed directly. In this study, we circumvent these problems by lyophilization and using cross-polarization techniques. $^{31}P$ NMR signals were detected from the tubulin-bound GTP in microtubules for the first time. Analysis of the $^{31}P$ CPMAS NMR spectrum indicates that GTP hydrolysis was delayed by the presence of taxol.

Protection by native edible plant extract MK-104 against kainate-induced neurotoxicity in mouse brain

  • Oh, Sang-Hee;Kim, Mee-Ree
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.109.2-110
    • /
    • 2003
  • The neuroprotective effect of solvent fraction of native edible plant MK-104 in the mice administered with kainate was evaluated using behavioral sign, neuronal injuries and biomarkers of oxidative stress. Mice, ICR male, were administered with the BFME through a gavage for 4 days consecutively, and on the 3rd day, kainate (450 mg/kg) was i.p. administered. The fraction(400 mg/kg) delayed the onset time of neurobehavioral change (p<0.01), reduced the severity of convulsion and lethality (p<0.05), and restored the level of GSH and lipid peroxidation in brain to control value. A similar protective action was also expressed by fraction-I (200 mg/kg), which showed a prominent protection against the neuronal damage in hippocampal CA1 and CA2 regions (p<0.01) caused by kainate injection. of TBARS value. Based on these results, BFME-I is suggested to contain a functional agent to prevent against oxidative stress in the brain of mice.

  • PDF

Aggregation Processes of a Weak Polyelectrolyte, Poly(allylamine) Hydrochloride

  • Park, Jae-Jung;Choi, Young-Wook;Kim, Kyung-Bae;Chung, Hoe-Il;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.104-110
    • /
    • 2008
  • Poly(allylamine) hydrochloride is a weak cationic polyelectrolyte that exhibits different aggregation properties at different solution pH values and aging times. Specifically, after several days aging in a pH 3 buffer, less than 1 mg/mL poly(allylamine) hydrochloride became turbid, and the hydrodynamic radius increased with a single diffusion mode. However, the hydrodynamic radius did not change at high concentrations. The dynamic processes of polymer aggregations at different pH values were verified by a light scattering and zeta-potential apparatus. The major interaction was caused by the capturing of counterions by the polyelectrolyte, which generates electrostatic, hydrophobic and cation-p interactions.

Investigation of GaN Negative Capacitance Field-Effect Transistor Using P(VDF-TrFE) Organic/Ferroelectric Material (P(VDF-TrFE) 유기물 강유전체를 활용한 질화갈륨 네거티브 커패시턴스 전계효과 트랜지스터)

  • Han, Sang-Woo;Cha, Ho-Young
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.209-212
    • /
    • 2018
  • In this work, we developed P(VDF-TrFE) organic/ferroelectric material based metal-ferroelectric-metal (MFM) capacitors in order to improve the switching characteristics of gallium nitride (GaN) heterojunction field-effect transistors (HFET). The 27 nm-thick P(VDF-TrFE) MFM capacitors exhibited about 60 ~ 96 pF capacitance with a polarization density of $6{\mu}C/cm^2$ at 4 MV/cm. When the MFM capacitor was connected in series with the gate electrode of GaN HFET, the subthreshold slope decreased from 104 to 82 mV/dec.

Study on Perception of Weight Control and Patterns of Diet/Low-Calorie Food Consumption according to Weight Status in Adult Women (성인여성의 체중상태에 따른 체중조절인식과 다이어트 식품 구매·섭취행동에 관한 연구)

  • Han, Chae-Jeong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.27 no.2
    • /
    • pp.104-113
    • /
    • 2017
  • The purpose of this study was to analyze and consumption patterns diet/low-calorie food. Ubjects were 353 adult women aged 20s~50s. Ubjects were divided into three groups according to body mass index (BMI): Normal group (BMI>23.0), overweight group (23.0${\leq}$BMI<25.0), and obesity group (BMI${\geq}$25.0). This study collected all information by self-administrated questionnaires. The SPSS version 21.0 was used for analysis of data. The obesity group lower education level (p<0.001), higher age (p<0.001) and higher income (p<0.001) than normal group. However, score of health status was highest in normal group (p<0.001). Proportion of obesity group pill type diet/low-calorie (p<0.034), drug (diuretic, appetite suppressant and riental medicine) (p<0.001), and cosmetic surgery (p<0.001). The main reason for consumption of diet/low-calorie was control without starving (28.0%). Obese group emphasized manufacturer, ingredient and reputation, whereas the normal group emphasized price and expected effectiveness (p<0.001).