Distinctive pH Dependence and Substrate Specificity of Peptide Hydrolysis by Human Stromelysin-1

Stromelysin-1에 의한 펩타이드 가수분해에서 pH와 기질특이성 연구

  • ;
  • Marianne V. Sorensen
  • Published : 2000.04.01

Abstract

A kinetic profile of the catalytic domain of stromelysin-1 (SCD) using the fluorescent peptide substrate has been determined by the stopped-flow technique. The pH profile has a pH optimum of about 5.5 with an extended shoulder above pH 7. Three pKa values, 5.0, 5.7, and 9.8 are found for the free enzyme state and two pH independent Kcat/Km values of 4.1$\times$104 M-1 s-1 and 1.4$\times$104 M-1 s-1 at low and high pH, respectively. The profile is quite different in shape with other MMP family which has been reported, having broad pH optimum with two pKa values. The substrate specificity of SCD towards fluorescent heptapeptide substrates has been also examined by thin layer chromatography. The cleavage sites of the substrates have been identified using reverse-phase HPLC method.SCD cleaves Dns-PLA↓L↓WAR and Dns-PLA↓L↓FAR at two positions. However, the Dns-PLA↓LRAR, Dns-PLE↓LFAR, adn Dns-PLSar↓LFAR are cleaved exclusively at one bond. The double cleavages of Dns-PLALWAR and Dns-PLALFAR by SCD are in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis agrees with the structural data that the S1' pocket of SCD is deeper than that of matriysin. The differences observed between SCD and matrilysin may form the basis of understanding the structural relationships and substrate specificities of the MMP family in vivo.

Keywords

References

  1. Crit. Rev. Oral. Biol. Med. v.4 Matrix metalloproteinases: A review Birkedal-Hansen, H.;W. G. I. Moore;M. K. Bodden;L. J. Windsor;B. Birkedal-Hansen;A. DeCarlo;J. A. Engler
  2. Anal. Biochem. v.155 A convenient fluorescent assay for vertebrate collagenases Bond, M. D.;D. S. Auld;R. R. Lobb
  3. J. Life Sci. v.9 Mutational Analysis of two conserved active site tyrosine residues in matrilysin Cha, J.
  4. Biochemistry v.36 Site-directed mutagenesis of the active glutamate in human matrilysin: Investigation of its role in catalysis Cha, J.;D. S. Auld
  5. Biochemistry v.35 Metal and pH dependence of heptapeptide catalysis by human stromlyein-1 catalytic domain Cha, J.;M. V. Pedersen;D. S. Auld
  6. J. Biol. Inorg. Chem. v.3 Selective replacement of the catalytic zinc of the human stromlyein-1 catalytic domain Cha, J.;M. V. Sorensen;Q-Z, Ye;D. S. Auld
  7. Acc. Chem. Res. v.22 Carboxypeptidase A Christianson, D. W.;W. N. Lipscomb
  8. J. Rheum. v.22 Elevated plasma stromelysin levels in arthritis Cheung, N. T.;D. J. Taylor;P. T. Dawes
  9. Biochemistry v.31 Biochemical characterization of matrilysin. activation conforms to the stepwise mechanisms proposed from other matrix metalloproteinases Crabbe, T.; F. Willenbrock;D. Eaton;P. Hynds;A. F. Carne;G. Murphy;A. J. P. Docherty
  10. Structure v.4 X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily Dhanaraj. V.;Q.-Z. Ye;L. L. Johnson;D. J. Hupe;D. F. Ortwine;J. B. Jr. Dunbar;J. R. Rubin;A. Pablovsky;C. Humblet;T. L. Blundell
  11. Biochemistry v.31 Mechanistic studies on the human matrix metalloproteinase stromelysin Harrison, R. K.;B. Chang;L. Niedzwiecki;R. L. Stein
  12. Biochemistry v.38 Role of His-224 in the anomalous pH dependence of human stromelysin-1 Holman, C. M.;C.-C. Kan;M. R. Gehring;H. E. Van Wart
  13. J. Biol. Chem. v.270 Matrix metalloproteinase 7(matrilysin) from human rectal carcinoma cells Imai, K.;Y. Yokohama;I. Nakanishi;E. Ochuchi;Y. Fujii;N. Nakai;Y. Okada
  14. Biochem. J. v.295 Direct activation of human neutrophil procollagenase by recombinant stromelysin Knauper, V.;S. M. Wilhelm;P. K. Seperack;Y. A. DeClerck;K. E. Langley;A. Ostues;H. Tschesche
  15. Eur. J. Biochem. v.224 pH and temperature dependences of thermolysin catalysis, catalytic role of zinc-coordinated water Kunugi, S.;H. Hirohara;N. Ise
  16. Structure v.3 Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, flour-bladed β-propeller Li, J.;P. Brick;M. C. O'Hare;T. Skarzynski;L. F. Lloyd;V. A. Curry;I. M. Clark;H. F. Bigg;B. L. Hazleman;T. E. Cawston;D. M. Blow
  17. Proc. Natl. Acad. Sci. U.S.A. v.70 Enzymatic activities of carobxypeptidase A's in solution and in crystals Lipscomb, W. N.
  18. Cancer Metastasis Rev. v.14 Contributions of tumor and stromal matrix metalloproteinases to tumor progression, invasion, and metastasis Macdougal, J. R.;L. M. Matrisian
  19. Arthritis Rheumatism v.38 Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis Manicourt, D.;N. Fuhimoto;K. Obata;E. M. A. Thonar
  20. Biochemistry v.30 Human fibroblast stromelysin catalytic domain: expression, purification, and characterization of a C-terminally truncated form Marcy, A. I.;L. L. Eiberger;R. Harison;H. K. Chan;N. I. Hutchinson;W. K. Hagmann;P. M. Cameron;D. A. Boulton;J. D. hermes
  21. Bioessays v.14 The matrix-degrading metalloproteinases Matrisian, L. M.
  22. Acc. Chem. Res. v.21 Structural basis of the action of thermolysin and related zinc peptidases Mattews, B. W.
  23. Biochem. J. v.248 Stromelysin is an activator of procollagenase. A study with natural and recombinant enzymes Murphy, G.;M. I. Cockett;P. E. Stephens;B. J. Smith;A. J. P. Docherty
  24. Biochemistry v.32 Comparative sequence specificities of human 72-and 92-kDa gelatinases(type Ⅳcollagenases)and PUMP(matrilysin) Netsel-Arnett, S.;Q. Sang;W. G. I. Moore;M. Navre;H. Birkedal-Hansen;H. E. Van Wart
  25. Biochemistry v.31 Substrate specificity of the human matrix metalloproteinase stromelysin and the development of continuous fluorometric assays Niedzwiecki, L.;J. Teahan;R. K. Harrison;R. L. Stein
  26. Anal. Biochem. v.183 A fluorescent oligopeptide energy transfer assay with broad applications for neutral proteases Ng. M.;D. S. Auld
  27. Arch. Biochem. Biophys. v.281 The effect of pH, temperature, and D₂O on the activity of porcine synovial collagenase and gelatinase Stack, M. S; R. D. Gray
  28. Biochemistry v.29 Fluorescent oligopeptide substrates for kinetic characterization of the specificity of Astacus protease Stocker, W.;M. Ng;D.S. Auld
  29. Eur. J. Biochem. v.157 Crystallographic structural analysis of phosphoramidates as inhibitors and transition-state analogs of thermolysin Tronrud, D. E.;A. F. Monzingo;B. W. Matthews
  30. Biochemistry v.35 Understanding the P₁' specificity of the matrix metalloproteinases: Effect of S₁' pocket mutations in matrilysin and stromelysin-1 Welch, A. R.;C. M. Holman;M. Huber;M. C. Brenner;M. F. Browner;H. E. Van Wart
  31. Biochem. Biophys. Acta v.1334 Catalytic domain comparisons of human fibroblast-type collagenase, stromelysin-1, and matrilysin Windsor, L. J.;D. L. Steele;S. B. LeBlanc;K. B. Taylor
  32. Biochemistry v.31 Purification and characterization of the human stromelysin catalytic domain expressed in Escherichia coli Ye, Q.;L. L. Johnson;D. J. Hupe;V. Baragi