• Title/Summary/Keyword: p.stutzeri

Search Result 36, Processing Time 0.033 seconds

Heavy Metal Accumulation in Cell of Heavy Metal-Tolerant Bacteria by Some Physical and Chemical Treatments (물리화학적 전처리에 의한 중금속 내성세균의 균체내 중금속 축적 변화)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.311-319
    • /
    • 1997
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wasewaters polluted with various heavy metals. Metal binding sites in the cells were investigated by extracting the components of the cells through pretreatments with hot water, acid, alkli, chloroform-methanol or chloroform-methanol/concentrated alkali. The heavy metal accumulation was drastically decreased by pretreatment with alkali or chloroform-methanol/concentrated alkali, but the heavy metal accumulation was not changed by pretreatment with chloroform-methanol. The amount of heavy metal accumulation was remarkably decreased by decreasing crude protein remaining in the cell. These results suggested that proteins of cell components played an important role on the heavy metal accumulation.

  • PDF

Sequence Characteristics of xylJQK Genes Responsible for Catechol Degradation in Benzoate-Catabolizing Pseudomonas sp. S-47

  • Park, Dong-Woo;Lee, Jun-Hun;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.5
    • /
    • pp.700-705
    • /
    • 2003
  • Pseudomonas sp. S-47 is capable of degrading benzoate and 4-chlorobenzoate as well as catechol and 4-chlorocatechol via the meta-cleavage pathway. The three enzymes of 2-oxopenta-4-enoate hydratase (OEH), acetaldehyde dehydrogenase (acylating) (ADA), and 2-oxo-4-hydroxypentonate aldolase (HOA) encoded by xylJQK genes are responsible for the three steps after the meta-cleavage of catechol. The nucleotide sequence of the xylJQK genes located in the chromosomal DNA was cloned and analyzed. GC content of xylJ, xylQ, and xylK was 65% and consisted of 786, 924, and 1,041 nucleotides, respectively. The deduced amino acid sequences of xylJ, xylQ, and xylK genes from Pseudomonas sp. S-47 showed 93%, 99%, and 99% identity, compared with those of nahT, nahH, and nahI in Pseudomonas stutzeri An10. However, there were only about 53% to 85% identity with xylJQK of Pseudomonas putida mt-2, dmpEFG of P. putida CF600, aphEFG of Comamonas testosteroni TA441, and ipbEGF of P. putida RE204. On the other hand, the xylLTEGF genes located upstream of xylJQK in the strain S-47 showed high homology with those of TOL plasmid from Pseudomonas putida mt-2. These findings suggested that the xylLTEGFIJQK of Pseudomonas sp. S-47 responsible for complete degradation of benzoate and then catechol via the meta-pathway were phylogenetically recombinated from the genes of Pseudomonas putida mt-2 and Pseudomonas stutzeri An10.

A Study on Isolation of BTEX Degrading Microorganism and Variation of BTEX Removal Efficiency and Microorganism Growth Rate According to Co-Culture (BTEX 분해미생물의 순수분리와 혼합 배양에 따른 기질 분해율 및 미생물 성장률 변화에 관한 연구)

  • Chung, Kyung-mi;Lee, Sang-hyup;Lee, Han-woong;Hong, Seok-won;Kim, Young-o;Choi, Yong-su;Yu, Myong-jin
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.347-352
    • /
    • 2005
  • The isolated microorganisms, Pseudomonas stutzeri, Raoultella planticola (Klebsiella), Serratia fonticola from petroleum contaminated soil were enriched on benzene, toluene, ethylbenzene, o-xylene as carbon and energy sources, respectively. And the degradation characteristics of BTEX was observed in the mixed BTEX substrates. We found that the BTEX in mixed substrates were degraded more than 50% by three isolated microorganisms. Among three isolated microorganisms, the highest degradation rate was observed in Pseudomonas stutzeri, but the degradation rate was different according to microorganisms. In order to increase the degradation efficiency, we applied the co-culture of isolated three microorganisms. The mixture rate of pseudomonas stutzeri : Raoultella planticola (Klebsiella) : Serratia fonticola was follows ; 1:2:1, 1:1:2, and 2:1:1, respectively. In two co-culture of 1:2:1 and 1:1:2, degradation rate was lower than isolated microorganisms. However, degradation rate became higher than isolated microorganisms and the degradation rate of benzene, toluene, and ethylene was more than 95% in co-culture of 2:1:1. The degradation rate increased through the co-culture of isolated microorganisms, however, the growth rate decreased. This was resulted from the substrate competition between microorganisms. The co-culture of microorganisms is a effective method to increase the degradation efficiency of BTEX and the co-culture mixing rate is a important factor for determination of degradation efficiency.

Binding Site of Heavy Metals in the Cell of Heavy Metal-Tolerant Microorganisms (중금속 내성균의 세포내 중금속 결합 위치)

  • Cho, Ju-Sik;Lee, Hong-Jae;Lee, Young-Han;Sohn, Bo-Kyoon;Jung, Yeun-Kyu;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.246-253
    • /
    • 1998
  • Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri which possessed the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The binding sites of heavy metal in the cells were investigated by chemical modification of functional groups the cell walls. To determine the binding sites of heavy metal in the cells, electrochemical charge of amine and carboxyl groups in the cell walls of heavy metal-tolerant microorganisms were chemically modified. Chemical modifications of amine groups did not affect the heavy metal uptake as compared to native cell walls. In contrast, modifications of carboxyl groups drastically decreased heavy metal uptake as compared to native cell walls, and electron microscopy confirmed that the form and structure of the heavy metal uptake were different from those of native cell walls. The results suggested that the carboxyl groups were the major sites of heavy metal uptake in the heavy metal-tolerant microorganism cell.

  • PDF

Characterization of SAL plasmid isolated from Pseudomonas putida (Pseudomonas putida에서 분리한 SAL 플라스미드의 특성)

  • 김희윤;임영복;이영록
    • Korean Journal of Microbiology
    • /
    • v.25 no.1
    • /
    • pp.9-16
    • /
    • 1987
  • Three strains of bacteria utilizing salicylate, KU801(pKU5, pKU8), KU803(pKU6, pKU9), and KU806(pKU7, pKU10), were selected from the isolates and identified as Pseudomonas putida. By agarose gel electrophoresis, it was found that the strains had two plasmids each. All three strains were resistant to antibiotics such as ampicillin, tetracyclin, and chloramphenicol, and did not utilize other aromatic and aliphatic hydrocarbons examined except salicylate. The plasmids (pKU5, pKU6, and pKU7) of larger molecular weight were cured by treatment with mitomycin C and frequencies of curing were 0.4%, 1.67%, and 0.75%, respectively. Cured strains did not degrade salicylate and still had antibiotic resistances, which were identical with wild strains. The genes for salicylate degradation were proved to be enclded on thier plasmids. The molecular weights of pKU5 and pKU6 were estimated as 103.5Md, and that of pKU 7 as 101 Md. The new SAL plasmids, pKU5, pKU6, and pKU7 were transferred to P. putida and P. aeruginosa, but not to E. coli.

  • PDF

Physical Analysis of nahQ tnpA Genes from Pseudomonas fluorescens

  • Seol, Ja-Young;Chol, Soon-Young;Min, Kyung-Hee
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.338-342
    • /
    • 2001
  • Pseudomonas fluorescens SM11 is a naphthalene-degrading strain whose dissimilatory genes are cho-mosomally encoded. We have cloned the 2.9 kb Sal I fragment harboring genes for the naphthalene-degrading upper pathway. The nucleotide sequences were determined to be nahQ, napA, and partial regions of nahE genes. The nahQ encods a protein of 188 amino acid residues with a deduced molec-ular wight of 20.8kDa. The high homology with other proteins suggests that NAhQ may be an active and useful protein whtich gives as selective advantage to naphthalene degradatin. Transposase(TnpA)encodes a polypetide chain with a molecular mass of 41.8kDa consisting of 376 amino acid residues. The deduced anino acid sequence of tnpA revealed 96% idenitity with putative transposase of P. stutzeri OX1,. It was assumed that transposase plays an important role in the evloution of the catabloic-path way in the regulation of nah expression.

  • PDF

Isolation Frequency and Antimicrobial Susceptibility of Pseudomonas Species from Clinical Materials (임상검체에서 Pseudomonas spp.의 분리빈도와 항균제 감수성)

  • Shin, Hyun-Sung;Park, Youn-Bo;Cho, Kyung-Jin
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.39 no.3
    • /
    • pp.167-177
    • /
    • 2007
  • From the total 121,294 clinical materials submitted to the Department of Laboratory Medicine of "C" hospital from December 1, 2004 to November 30, 2006, 3,408 Pseudomonas spp. were isolated. The isolation frequencies of Pseudomonas spp. were as follows, P. aeruginosa 95.5%, P. putida 2.5%, P. fluorescens 0.8%, along with low frequencies of P. luteola, P. alcaligenes, P. stutzeri, P. oryzihabitants, P. mendocina and unidentified Pseudomonas species. The isolation rates of Pseudomonas spp. according to season and sex were evenly distributed. The isolated frequency of Pseudomonas spp. in male was two times higher than that of in female showing significantly more male patients in surgical areas and more female patients in internal areas (p<0.001). In monthly analysis, Pseudomonas spp. were the most frequently isolated in July (10.4%), but lowest in February (5.6%). Half of Pseudomonas spp. were isolated from sputum (48.2%). In the susceptibility analysis of Pseudomonas spp. by VITEK II AST cards, the Pseudomonas spp showing higher susceptibility against antimicrobial agents were piperacillin/tazobactam (82.7%) in P. aeruginosa; amikacin (84.7%), colistin (83.3%) in P. putida; and amikacin (96.3%), cefepime (87.5%), ceftazidime (87.5%) ciprofloxacin (92.3%), colistin (88.5%) gentamicin (96.2%), isepamicin (96,1%), meropenem (92.3%), netilmicin (96.0%), piperacillin/ tazobactam (95.4%) and tobramycin (92.6%) in P. fluorescens.

  • PDF

Analysis on infection control of general hospital radiology (종합병원 영상의학과의 감염관리 대한 분석)

  • Shin, Jung-Sub;Park, Cheol-Woo;Jeon, Byeong-Kyou
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.335-342
    • /
    • 2012
  • This study aims to find a way to control infection of community radiology effectively by calculating the degree of contamination, culture and identifying the flora in radiology of five general hospitals in Gyeongsangbuk-do. Staphylococcus, Micrococcus, Pseudomonas stutzeri, Pseudomonas oryzihabitans were identified as surface flora. These are know to be pathogens of hospital acquired infection and there was no radiology-specific flora. Research subject hospitals were conducting similar infection control education but degree of contamination of each hospital showed significant difference. Difference in degree of contamination according to contact sources were analyzed by Contact sources were classified into technologist-using, patients-using and common-using materials. Analysis of each hospital's degree of contamination showed that patient-using materials were significantly more contaminated than technologist-using and common-using materials (p<0.001). Devices which are similar to each other in monthly average frequency of use showed no significant difference in degree of contamination, but general X-ray devices and chest boards which are used most frequently showed higher degree of contamination than others. In addition, hospital A, B and C which have heavier monthly average caseload showed relatively high degree of contamination on irradiation devices which are used by technologists only or by technologists and patients commonly, office desks and doorpulls. Hence it is considered that intensity of infection control education should be different according to the degree of monthly average caseload. This study provided an opportunity to aware that technologists' feeling of contamination is crucial for infection control of radiology, and the Accupoint ATP public hygiene monitoring system which was used in this study for measuring the degree of contamination was proved to be an effective measuring device for hospital acquired infection management.

Annual Distribution of Heterotrophic Bacterial Community in the Marine Ranching Ground of Tongyeong Coastal Waters (통영 바다목장 해역의 종속영양세균 군집의 연차적 분포)

  • Kim, Mal-Nam;Lee, Han-Woong;Lee, Jin-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.25 no.3
    • /
    • pp.273-278
    • /
    • 2007
  • The cell numbers of heterotrophic bacteria inhabiting the surface and bottom sea water harvested from the 5 stations in the marine ranching ground of Tongyeong coastal waters in $2003{\sim}2007$ were examined, and species composition of the heterotrophic bacterial population and dominant species were analyzed as well. Sea water samples collected in summer season contained much higher number of heterotrophic bacteria than those harvested in winter, spring and autumn seasons due to the higher sea water temperature. However the cell number of heterotrophic bacteria did not show a significant dependence on the location of the sampling stations. The cell number of heterotrophic bacteria in the surface sea water harvested in October 2003 and in September 2004 was not discernibly different from that in the bottom sea water and sometimes the former was even fewer than the latter because of the typhoon and localized torrential downpour. The number of heterotrophic bacteria decreased every year. The main bacterial species were Pseudomonas fluorescens TY1, Pseudomonas stutzeri TY2, Acinetobacter lwoffii TY3, Sphingomonas paucimobilis TY4, Burkholderia mallei TY5, Pasteurella haemolytica TY6, Pasteurella multocida TY7, Comamonas acidovorans TY8, Actinobacillus ureae TY9 and Chryseobacterium indologenes TY10. P. fluorescens TY1 and A. lwoffii TY3 were found to be the dominant species.

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF