• 제목/요약/키워드: p.stutzeri

검색결과 36건 처리시간 0.025초

식물근부균 Fusarium solani에 대한 Pseudomonas stutzeri YPL-1의 생물학적 방제기작 (Antifungal Mechanism of Pseudomonas stutzeri YPL-l for Biocontrol of Fusarium solani causing Plant Root Rot)

  • 임호성;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권1호
    • /
    • pp.81-88
    • /
    • 1990
  • 근채류식물의 근부원인이 되는 토양유래의 식물병원 성진균에 대한 생물학적 방제를 위하여 저병해인삼경작 지토양으로부터 식물근부균 Fusarium solani의 생육을 강력히 길항하는 억제세균 YPL-1을 분리, 선발하였으며 이들 동정한 결과 Pseudomonas stutzeri이거나 그 근연종으로 확인하였다. 선발된 P.stutzeri YPL-1에 의해 생산된 근부균생육억제물질은 열에 민감하고 고분자의 단백질물질로서 chitinase 및 laminarinase 등 F.solani의 외막가수분해효소인 것으로 추정된다. 더욱이 chitinase 생산능과 근부균생육억제능은 정관계로 비례한다는 것도 알았다. 이는 NTG를 이용하여 얻은 chitinase 및 laminarinase 생산불능변이주 P.stutzeri YPL-M122(chi-, lam-), P.stutzeri YPL-M153(chi-)에 의해서도 확인되었다. 그러나 본 P.stutzeri YPL-1은 siderophore를 전혀 생산하지는 못하였다. 이 결과로 미루어 보아 선발된 억제균 P.stutzeri YPL-1 균주에 의한 식물근부균 F.solani의 생육억제기작은 저분자물질인 항생물질이나 siderophore가 아닌 chitinase를 주로 하는 외막가수분해효소에 의한 근부균 F.solani의 세포벽분해에 기인된 것으로 생각된다.

  • PDF

식물근부균 Fusarium Solani에 길항하는 생물방제균 Pseudomonas stutzeri YPL-1의 유전공학적 개발 (Increased Antifungal Activity with Genetic Development of Antagonistic Pseudomonas stutzeri YPL-1 against Fusariym solani)

  • 임호성;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권4호
    • /
    • pp.437-441
    • /
    • 1990
  • 근채류 식물의 근부원인이 되는 식물병원균 Fusarium solani의 생육을 강력히 길항하는 생물반제균 Pseudomonas stutzeri YPL-1을 모균주로 하여 UV나 NTG로 돌연변이시킴으로써 길항능이 증강된 강력한 생물방제균을 유전적으로 육종하고자 하였다. 그 결과 길항기작의 원인인 외막가수분해효소 chitinase 생산능이 2.5배, 2.0배 정도로 증강된, 동시에 길항능도 모균주에 비해 1.7배, 1.5배 정도로 비례해서 증강된, 강력한 우수 길항변이주 P.stutzeri YPL-M26(UV)과 P.stutzeri YPL-M178(NTG)을 유전적으로 육종할 수 있었다. 길항종강변이주에 의한 F.solani의 생육억제기작도 모균주에서와 같이 고분자 물질인 chitinase를 주로 하는 외막가수분해효소에 의한 것으로 확인되었고, 균사신장억제율도 조사해 본 결과 조효소액 첨가 경우 24시간째에는 모균주 경우 87.1 정도인데 비해 거의 100의 생육억제율을 나타내는 강력한 생물반제균으로 유전적 육종을 할 수 있었다. 한편 변이주와 모균주의 효소에서도 그 최적반응 pH등 각종 효소학적 특성이 동일하였다.

  • PDF

The role and characterization of .betha.-1, 3-glucanase in biocontrol of fusarium solani by pseudomonas stutzeri YPL-1

  • Lim, Ho-Seong;KiM, Sang-Dal
    • Journal of Microbiology
    • /
    • 제33권4호
    • /
    • pp.295-301
    • /
    • 1995
  • An antifungal Pseudomonas stutzeri YPL-1 produced extracellular chitinase and .betha.-1, 3-glucanase that were key enzymes in the decomposition of fungal hyphal walls. These lytic extracellular enzymes markedly inhibited mycelial growth of the phytopathogenic fungus Fusarium solani. A chitinase from P. stutzeri YPL-1 inhibited fungal mycelial growth by 87%, whereas a .betha.-1, 3-glucanase from the bacterium inhibited growth by 53%. Furthermore, co-operative action of the enzymes synergistically inhibited 95% of the fungal growth. The lytic enzymes caused absnormal swelling and retreating on the fungal hyphal walls in a dual cultures. Scanning electron microscopy clearly showed hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. In an in vivo pot test, P. stutzeri YPL-1 proved to have biocontrol ability as a powerful agent in controlling plant disease. Planting of kidney bean (Phaseolus vulgaris L.) seedlings with the bacterial suspension in F. solani-infested soil significantly suppressed the development of fusarial root-rot. The characteristics of a crude preparation of .betha.-1, 3-glucanase produced from P. stutzeri YPL-1 were investigated. The bacterium detected after 2 hr of incubation. The enzyme had optimum temperature and pH of 40.deg.C and pH 5.5, respectively. The enzyme was stable in the pH range of 4.5 to 7.0 and at temperatures below 40.deg.C, with a half-life of 40 min at 60.deg.C.

  • PDF

The Production and Enzymatic Properties of Extracellular Chitinase from Pseudomonas stutzeri YPL-1, as a Biocontrol Agent

  • Lim, Ho-Seong;Kim, Sang-Dal
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.134-140
    • /
    • 1994
  • An antagonistic bacterium Pseudomonas stutzeri YPL-1 liberated extracellular chitinase and $\beta$-1,3-glucanase which are key enzymes in the decomposition of fungal hyphal walls. The lytic enzymes caused abnormal swelling and retreating at the hyphal tips of plant pathogenic fungus Fusarium solani in a dual culture. Scanning electron microscopy revealed the hyphal degradation of F. solani in the regions interacting with P. stutzeri YPL-1. The production of chitinase and properties of a crude preparation of the enzyme from P. stutzeri YPL-1 were investigated. Peak of the chitinase activity was detected after 4 hr of cultivation. The enzyme had optimum temperature and pH of 50$^{\circ}C$ and pH 5.3, respectively. The enzyme was stable in the pH range of 3.5 to 6.0 up to 50$^{\circ}C$. The enzyme was significantly inhibited by metal compounds such as $HgCl_2$, but was stimulated by $CoCl_2$. P. stutzeri YPL-1 produced high levels of the enzyme after 84 hr of incubation. Among the tested carbon sources, chitin was the most effective for the enzyme production, at the concentration level of 3%. As a source of nitrogen, peptone was the best for the enzyme production, at the concentration level of 4%. The maximum amount of enzyme was produced by cultivating the bacterium at a medium of initial pH 6.8.

  • PDF

Pseudomonas-stutzeri KF13의 ..$\beta$-1, 3-Glucanase 정제 및 성질 (Purification and Properties of .$\beta$-1, 3-Glucanase from Pseudomonas stutzeri KF13)

  • 방광웅;송형익;김재근;유대식;정기택
    • 미생물학회지
    • /
    • 제25권1호
    • /
    • pp.1-8
    • /
    • 1987
  • An extracellular $\beta$-1, 3-glucanase from Pseudomonas stutzeri KF 13 was purified about 390 with 26% recovery. The purified enzyme revealed a single band by polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis. The enzyme was stable in a pH 6.0 to 9.0, and relatively thermostable. The optimal pH and temperature on the enzyme activity were found to be 5.8 and 45.deg.C, respectively. The activation energy was calculated to be 16,130 cal per mole. The Km value for laminarin was found to be 3ng per ml and the molecular weight was determined to be 28,000 by gel filtration and 26,000 daltons by SDS-acrylamide gel electrophoresis. The enzyme was inhibited by 1.0mM of $Hg^{2+}$, and strongly inhibited by 1.0mM of p-chloromercuribenzoic acid.

  • PDF

생물방제균 Pseudomonas stutzeri YPL-1의 형질전환 조건 (Transformation of Antagonistic Pseudomonas stutzeri YPL-1 against Root Rotting Fungi Fusarium solani by Plasmid DNA)

  • 김용수;김상달
    • 한국미생물·생명공학회지
    • /
    • 제18권5호
    • /
    • pp.454-459
    • /
    • 1990
  • 식물근부균 Fusarium solani의 생육을 강력히 길항하는 생물방제균 Pseudomonas stutzeri YPL-1에 외부유전자 도입을 통한 유전공학적 육종방법의 기초를 확립하고자 하였다. 이를 위해 plasmid pKT230을 vector로 하여 형질전환의 가능성을 조사하였으며 이때, 혈질전환에 필요한 최적조건을 조사한 결과 P.stutzeri YPL-1의 형질전환에는 대수증식기 초기의 균체가 가장 적합하였고, 20mM RbCl과 100mM $CaCl_2$를 함유한 냉각용액에 1${\mu}g$/ml의 plasmid DNA를 첨가하였을 때 최대의 형질전환 빈도를 나타내었다. 또한 plasmid DNA와 competent cell를 혼합한 후 $0^{\circ}C$에서 60분간 처리하는 것이 가장 효과적이었으며 이와 같은 조건에서 형질전환 빈도는 2~$6 \times 10^{-6}$으로 나타났다.

  • PDF

Pseudomonas stutzeri IAM 12097의 Exo-maltotetraohydrolase에 관한 연구(硏究) -제일보(第一報). Exo-maltotetraohydrolase의 정제(精製)- (Studies on the Exo-maltotetraohydrolase of Pseudomonas stutzeri IAM 12097 -Part I. Purification of Exo-maltotetraohydrolase-)

  • 이미자;정만재
    • Applied Biological Chemistry
    • /
    • 제27권2호
    • /
    • pp.73-78
    • /
    • 1984
  • Pseudomonas stutzeri IAM 12097의 trypticase 배지(培地)에서 36시간(時間), initial pH는 6.3일때 Exo-maltotetraohydrolase가 최대로 생산되었다. Exo-maltotetraohydrolas, 황산(黃酸)암모니아분획(分劃)과 2회(回)의 DEAE-cellulose column chromatography에 의하여 정제(精製)하였으며 정제효소(精製酵素)의 specific activity는 108.6 u/mg protein, 수율(收率)은 9.4%이었다. 본정제효소(本精製酵素)는 polyacrylamide gel electrophoresis와 SDS-polyacrylamide gel electrophoresis에 의하여 각각(各各) 단일(單一) band를 나타내었다.

  • PDF

Aerobic Degradation of Tetrachloroethylene(PCE) by Pseudomonas stutzeri OX1

  • Ryoo, Doohyun;Shim, Hojae;Barbieri, Paola;Wood, Thomas K.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2000년도 추계학술대회
    • /
    • pp.207-208
    • /
    • 2000
  • Since trichloroethylene (TCE), dichloroethylene (DCE), and vinyl chloride (VC) arise from anaerobic degradation of tetrachloroethylene (PCE) and TCE, there is interest in creating aerobic remediation systems that avoid the highly toxic VC and cis-DCE which predonominate in anaerobic degradation. However, it seemed TCE could not be degraded aerobically without an inducing compound (which also competitively inhibits TCE degradation). It has been shown that TCE induces expression of both the toluene dioxygenase of p. putida F1 as well as toluene-p-monooxygenase of P.mendocina KRI. We investigated here the ability of PCE, TCE, and chlorinated phenols to induce toluene-o-xylene monooxygenase (ToMO) from P.stutzeri OX1. ToMO has a relaxed regio-specificity since it hydroxylates toluene in the ortho, meta, and para positions; it also has a broad substrate range as it oxidizes o-xylene, m-xylene, p-xylene, toluene, benzene, ethylbenzene, styrene, and naphthalene; chlorinated compounds including TCE, 1, 1-DCE, cis-DCE, trans-DCE, VC, and chloroform : as well as mixtures of chlorinated aliphatics (Pseudomonas 1999 Maui Meeting). ToMO is a multicomponent enzyme with greatest similarity to the aromatic monooxygenases of Burkholderia pickettii PKO1 and P.mendocina KR1. Using P.sturzeri OX1, it was found that PCE induces P.mendocina KR1 Using P.situtzeri OX1, it was found that PCE induces ToMO activity measured as naphthalene oxygenase activity 2.5-fold, TCE induces 2.3-fold, and toluene induces 3.0 fold. With the mutant P.stutzeri M1 which does not express ToMO, it was also found there was no naphthalene oxygenate activity induced by PCE and TCE; hence, PCE and TCE induce the tow path. Using P.putida PaW340(pPP4062, pFP3028) which has the tow promoter fused to the reporter catechol-2, 3-dioxygenase and the regulator gene touR, it was determined that the tow promoter was induced 5.7-, 7.1-, and 5.2-fold for 2-, 3-, 4-chlorophenol, respectively (cf. 8.9-fold induction with o-cresol) : however, TCE and PCE did not directly induce the tou path. Gas chromatography and chloride ion analysis also showed that TCE induced ToMO expression in P.stutzeri OX1 and was degraded and mineralized. This is the first report of significant PCE induction of any enzyme as well as the first report of chlorinated compound induction of the tou operon. The results indicate TCE and chlorinated phenols can be degraded by P.stutzeri OX1 without a separate inducer of the tou pathway and without competitive inhibition.

  • PDF

Pseudomonas stutzeri IAM 12097의 exo-maltotetraohydrolase에 관한 연구(硏究) -제2보(第二報). Exo-maltotetraohydrolase의 특성(特性)- (Studies on the Exo-maltotetraohydrolase of Pseudomonas stutzeri IAM 12097 -Part II. Characteristics of Exo-maltotetraohydrolase-)

  • 이미자;정만재
    • Applied Biological Chemistry
    • /
    • 제27권4호
    • /
    • pp.271-277
    • /
    • 1984
  • Pseudomonas stutzeri IAM 12097이 생산(生産)하는 Exo-maltotetraohydrolase의 gel filtration에 의하여 추정(推定)된 분자량(分子量)은 60,000이었고, SDS-polyacrylamide gel electrophoresis에 의하여 추정(推定)된 분자량(分子量)은 63,000이었으며 등전점(等電點)은 PH 4.8이었다. 최적(最適)pH는 6.6, PH안정(安定)범위는 $6.0{\sim}10.5$, 최적온도(最適溫度)는 $45{\sim}50^{\circ}C,\;40^{\circ}C$이하(以下)에서는 안정(安定)하였으며, $55^{\circ}C$이상(以上)에서는 급격하게 불활성화(不活性化)되었다. 본효소(本酵素)는 $Ag^+,\; Hg^{++},\;I_2,\;{\beta}-cycoldextrin$에 의하여 완전(完全)히 저해(沮害)되었고 EDTA, ${\rho}-CMB$, IAA에 의하여 약간 저해(沮害)되었다. soluble starch, amylopectin, amylose에 대(對)한 Michaelis constant(Km)는 각각(各各) 7.70mg/ml, 6.17mg/ml, 5.56mg/ml이었다.

  • PDF

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas stutzeri A1501 Facilitates the Growth of Rice in the Presence of Salt or Heavy Metals

  • Han, Yunlei;Wang, Rui;Yang, Zhirong;Zhan, Yuhua;Ma, Yao;Ping, Shuzhen;Zhang, Liwen;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1119-1128
    • /
    • 2015
  • 1-Aminocyclopropane-1-carboxylate (ACC) deaminase, which is encoded by some bacteria, can reduce the amount of ethylene, a root elongation inhibitor, and stimulate the growth of plants under various environmental stresses. The presence of ACC deaminase activity and the regulation of ACC in several rhizospheric bacteria have been reported. The nitrogen-fixing Pseudomonas stutzeri A1501 is capable of endophytic association with rice plants and promotes the growth of rice. However, the functional identification of ACC deaminase has not been performed. In this study, the proposed effect of ACC deaminase in P. stutzeri A1501 was investigated. Genome mining showed that P. stutzeri A1501 carries a single gene encoding ACC deaminase, designated acdS. The acdS mutant was devoid of ACC deaminase activity and was less resistant to NaCl and NiCl2 compared with the wild-type. Furthermore, inactivation of acdS greatly impaired its nitrogenase activity under salt stress conditions. It was also observed that mutation of the acdS gene led to loss of the ability to promote the growth of rice under salt or heavy metal stress. Taken together, this study illustrates the essential role of ACC deaminase, not only in enhancing the salt or heavy metal tolerance of bacteria but also in improving the growth of plants, and provides a theoretical basis for studying the interaction between plant growth-promoting rhizobacteria and plants.