• Title/Summary/Keyword: p.p.-rings

Search Result 332, Processing Time 0.024 seconds

REPEATED-ROOT CONSTACYCLIC CODES OF LENGTH 2ps OVER GALOIS RINGS

  • Klin-eam, Chakkrid;Sriwirach, Wateekorn
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.131-150
    • /
    • 2019
  • In this paper, we consider the structure of ${\gamma}$-constacyclic codes of length $2p^s$ over the Galois ring $GR(p^a,m)$ for any unit ${\gamma}$ of the form ${\xi}_0+p{\xi}_1+p^2z$, where $z{\in}GR(p^a,m)$ and ${\xi}_0$, ${\xi}_1$ are nonzero elements of the set ${\mathcal{T}}(p,m)$. Here ${\mathcal{T}}(p,m)$ denotes a complete set of representatives of the cosets ${\frac{GR(p^a,m)}{pGR(p^a,m)}}={\mathbb{F}}p^m$ in $GR(p^a,m)$. When ${\gamma}$ is not a square, the rings ${\mathcal{R}}_p(a,m,{\gamma})=\frac{GR(p^a,m)[x]}{{\langle}x^2p^s-{\gamma}{\rangle}}$ is a chain ring with maximal ideal ${\langle}x^2-{\delta}{\rangle}$, where ${\delta}p^s={\xi}_0$, and the number of codewords of ${\gamma}$-constacyclic code are provided. Furthermore, the self-orthogonal and self-dual ${\gamma}$-constacyclic codes of length $2p^s$ over $GR(p^a,m)$ are also established. Finally, we determine the Rosenbloom-Tsfasman (RT) distances and weight distributions of all such codes.

A NOTE ON STRONG REDUCEDNESS IN NEAR-RINGS

  • Cho, Yong-Uk
    • The Pure and Applied Mathematics
    • /
    • v.10 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Let N be a right near-ring. N is said to be strongly reduced if, for $a\inN$, $a^2 \in N_{c}$ implies $a\;\in\;N_{c}$, or equivalently, for $a\inN$ and any positive integer n, $a^{n} \in N_{c}$ implies $a\;\in\;N_{c}$, where $N_{c}$ denotes the constant part of N. We will show that strong reducedness is equivalent to condition (ⅱ) of Reddy and Murty's property $(^{\ast})$ (cf. [Reddy & Murty: On strongly regular near-rings. Proc. Edinburgh Math. Soc. (2) 27 (1984), no. 1, 61-64]), and that condition (ⅰ) of Reddy and Murty's property $(^{\ast})$ follows from strong reducedness. Also, we will investigate some characterizations of strongly reduced near-rings and their properties. Using strong reducedness, we characterize left strongly regular near-rings and ($P_{0}$)-near-rings.

  • PDF

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

THE GAUSS SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho;Jun, Sang Pyo
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.519-535
    • /
    • 2018
  • Let ${\mathcal{R}}$ denote the Galois ring of characteristic $p^n$, where p is a prime. In this paper, we investigate the elementary properties of Gauss sums over ${\mathcal{R}}$ in accordance with conditions of characters of Galois rings, and we restate results for Gauss sums in [1, 2, 3, 7, 12, 13]. Also, we compute the modulus of the Gauss sums.

QUADRATIC RESIDUE CODES OVER GALOIS RINGS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.567-572
    • /
    • 2016
  • Quadratic residue codes are cyclic codes of prime length n defined over a finite field ${\mathbb{F}}_{p^e}$, where $p^e$ is a quadratic residue mod n. They comprise a very important family of codes. In this article we introduce the generalization of quadratic residue codes defined over Galois rings using the Galois theory.

NOETHERIAN RINGS OF KRULL DIMENSION 2

  • Shin, Yong-Su
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.1017-1023
    • /
    • 2010
  • We prove that a maximal ideal M of D[x] has two generators and is of the form where p is an irreducible element in a PID D having infinitely many nonassociate irreducible elements and q(x) is an irreducible non-constant polynomial in D[x]. Moreover, we find how minimal generators of maximal ideals of a polynomial ring D[x] over a DVR D consist of and how many generators those maximal ideals have.

ON ALMOST QUASI-COHERENT RINGS AND ALMOST VON NEUMANN RINGS

  • El Alaoui, Haitham;El Maalmi, Mourad;Mouanis, Hakima
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.5
    • /
    • pp.1177-1190
    • /
    • 2022
  • Let R be a commutative ring with identity. We call the ring R to be an almost quasi-coherent ring if for any finite set of elements α1, …, αp and a of R, there exists a positive integer m such that the ideals $\bigcap{_{i=1}^{p}}\;R{\alpha}^m_i$ and AnnRm) are finitely generated, and to be almost von Neumann regular rings if for any two elements a and b in R, there exists a positive integer n such that the ideal (αn, bn) is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties.

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

Synthesis and Structure of Tetrahomodioxa p-phenylcalix(4)arene dihexylether (Tetrahomodioxa p-phenylcalix(4) arene dihexylether의 합성 및 구조에 관한 연구)

  • 노광현;박영자
    • Korean Journal of Crystallography
    • /
    • v.13 no.3_4
    • /
    • pp.158-164
    • /
    • 2002
  • Tetrahomodioxa p-phenylcalix(4)arene dihexylether(C/sub66/H/sub68/O/sub6/) has been synthesized and structurally characterized by X-ray diffraction. Reaction of tetrahomodioxa p-phenylcalix(4)arene with hexyl halide and NaH in DMF leads to the dihexyl derivatives, 7,13,21,27-tetraphenyl-29,31-dihexyloxy- 2,3,16,17-tetrahomo-3,17-dioxacalit(4)arenes. The crystal is orthorhombic, P2₁2₁2₁, a= 9.764(2), b=16.167(2), c=32.994(3) Å, V=5208(1) Å, Z= 4, Dc = 1.221 gcm/sup -3/. The structure was solved by direct methods and refined by full-matrix least squares. Refinement converged at R = 0.070 for 2009 observed reflections. This molecule has a C-1,2-alternate conformation with pseudo-centrosymmetry and has two pairs of opposite phenyl rings, which are approximately parallel to each other. The benzene rings A and B are up, and the rings C and D rings are down with respect to the plane of the macrocyclic ring.