• Title/Summary/Keyword: p-xylene

Search Result 322, Processing Time 0.027 seconds

Assessment of Organic Compounds Emission from Consumer Products in an Environmental Chamber System

  • Jo, Wan-Kuen;Lee, Jong-Hyo;Lim, Ho-Jin;Kwon, Ki-Dong;Jeong, Woo-Sik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E2
    • /
    • pp.39-46
    • /
    • 2007
  • In order to present the scientific information of organic emissions from consumer products available, the current study examined the emissions composition for three different types of consumer products being used in Korea in an environmental chamber: air freshener (AF), mosquito repellents (MSQR), and moth repellents (MTHR). Emission rates were evaluated by determining emission rates of the target compound from the selected products using an electropolished stainless steel (SS) test chamber $(40{\times}25{\times}50cm^3)$. A time-dependent empirical relationship developed in this study agreed well with the test results. As same with the emission concentrations, MSQR exhibited the highest emission rate for all target compounds except for limonene and naphthalene. MTHR ($9,200\;{\mu}g\;h^{-1}$) showed the highest emission rate of naphthalene followed by MSQR ($8,300\;{\mu}g\;h^{-1}$). Moreover, the concentrations in residential bedroom conditions for target compounds emitted from three types of consumer products were estimated. This estimation suggests that the uses of consumer products can elevate indoor levels of target compounds. In particular, any types of the consumer products may increase the indoor level of m, p-xylene.

Investigation on the Cause of Malodor through the Reproduction of Chemicals (화학물질의 재현을 통한 악취발생원인 규명)

  • Park, Sang Jun;Oh, Young Hwan;Jo, Bo Yeon;Lee, Jae Shin;Kim, Eui Yong
    • KSBB Journal
    • /
    • v.29 no.5
    • /
    • pp.392-398
    • /
    • 2014
  • It was confirmed that malodor connected with an air-conditioner in an automobile is caused by microbial volatile organic compounds (MVOCs) produced by microorganisms and through microorganisms coexisting with each other to form a biofilm on the evaporator surface. A bacterium, Methylobacterium aquaticum, can form a biofilm on the evaporator surface. The biofilm was composed of 45.79% C (Carbon), 42.36% O (Oxygen), 1.85% Na (Sodium), 5.42% Al (Aluminum), 1.39% P (Phosphorus), 0.74% Cl (Chlorine) and 2.45% K (Potassium). This result matches the composition of the biofilm formed on the surface of the used evaporator. It was determined that sulfur compounds (Hydrogen sulfide, Dimethyl sulfide) and organic acids (n-Butyric acid, n-Valeric acid, iso-Valeric acid) in the air which was blown into the automobile were generated by Methylobacterium aquaticum and Aspergillus versicolor, respectively. On the other hand, volatile organic compounds (Toluene, Xylene, 2-Ethylhexanol, 2-Phenyl- 2-propanol, Ethylbenzene) were not found. It is estimated that the reason is due to the low concentration of generated MVOCs or is caused by the change of some MVOCs depending on the nutrients (medium).

Catalytic Oxidation of VOCs using Photocatalysis (광촉매반응을 이용한 VOCs의 촉매산화)

  • 이승범;이재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.18 no.2
    • /
    • pp.52-59
    • /
    • 2003
  • This study was progressed in photocatalysis of VOCs using $UV/TiO_2$ which was a benign process environmentally. The experiments were peformed to know photodegradation characteristics as crystalline structure of $TiO_2$ which had anatase, rutile and P-25 (anatase : rutile = 70 : 30). The main purpose of this study was to identify photocatalytic characteristics as inlet concentration of reactants, $H_2O$, and residence time. The inlet concentration of VOCs was changed 50, 100 and 200 ppmv, and amount of $H_2O$ was changed 0, 500 and $1000{\;}mg/m^3$, respectively. The deep conversion was increased as the inlet concentration decreased, and the amount of $H_2O$ increased. The deep conversion of benzene had the highest value at $1000{\;}mg/m^3${\;}H_2O$ and 50 ppmv of inlet concentration. The reactivity of reactants was decreased in order benzene > toluene > m-xylene. Also, the photocatalytic deep conversion was increased as residence time increased, because the contact time between reactants and catalyst was increased. In this study, intermediates had not found by GC/MSD analysis. Therefore, the reactants were completely converted to $H_2O{\;}and{\;}CO_2$.

Biodegradation of Gasoline Contaminated Soils under Denitrifying Conditions

  • Oh, In-Suk;Lee, Si-Jin;Chang, Soon-Woong
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.392-396
    • /
    • 2003
  • Leaking underground storage tanks are a major source of groundwater contamination by petroleum hydrocarbons. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Nitrate can also serve as an electron acceptor And nitrate is less expensive and more soluble than oxygen. it may be more economical to restore fuel-contaminated aquifers using nitrate rather than oxygen. And denitrifying bacteria are commonly found in the subsurface and in association with contaminated aquifer materials. These studies have shown that BTEX and MTBE can be degraded by the nitrate-amended microcosms under aerobic and anaerobic conditons. Biodegradation of the toluene and ethylbenzne compounds occurred very quickly under denitrifying conditions. MTBE, benzene and p-xylene were recalcitrant under denitrifying conditions in this study.

  • PDF

Toxicity Evaluation of Hazardous Contaminants by Measuring Lag Periods and Specific Growth Rates of a Test Microorganism (미생물의 비성장속도와 지연기의 측정을 통한 유해오염물질의 독성검사)

  • 양진우;장덕진
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.469-476
    • /
    • 1998
  • Among 31 water-born microbial strains isolated from various sites in Korea, strain DJ-4 was selected as a test organism for toxicity measurements in that its growth was completely inhibited by the presence of 668.4 mg/L of chloroform and 297.5 mg/L of toluene in the liquid LB medium whereas others did not. It was observed that lag periods and specific growth rates of DJ-4 batch vial cultures were prolonged and decreased, respectively, by phenol, benzene, toluene, ethylbenzene, p-xylene, perchloroethylene, trichloroethylene, and chloroform at the concentrations between 3.6 and 417.8 mg/L. There changes were found to be linear with respect to the concentrations of the toxic compounds. From the first-order regression equations, 50% effective concentrations (EC50${\mu}$ for concentrations of toxic compounds causing 50% decrease of specific growth rates and EC50lag for 50% increase of length of lag periods) were calculated for each compounds. By comparing DJ-4 EC50${\mu}$ values with Daphnia LC50's from a literature for benzene, ethylbenzene, toluene, and trichloroethlyene, it was concluded that microbial specific growth could be a new, fast, and reliable parameter for toxicity tests.

  • PDF

Analysis of Air Quality Change of Cheonggyecheon Area by Restoration Project (청계천복원공사에 따른 청계천과 주변지역의 대기질 변화분석)

  • Jang, Young-Kee;Kim, Jeong;Kim, Ho-Jung;Kim, Woon-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.99-106
    • /
    • 2010
  • The project of Cheonggyecheon revived the 5.8 kilometer stream and it removed the cover of stream and Cheonggye elevated road. It was begin October of 2003 and completed October of 2005. The purpose of this study is to analyze the air pollution change of Cheonggyecheon area and neighboring area from before and after the project. The change of concentration is compared with an air monitoring station data and measurement data. The analyzed pollutants are $NO_2$, $PM_{10}$, heavy metal, VOC which are measured at Cheonggyecheon and neighboring area. As the results, $NO_2$ concentration shows 10 % decreases in Cheonggyecheon area and neighboring area shows 16 % decreases by Chenoggyecheon restoration, and $PM_{10}$ concentration shows 15 % decreases in Cheonggyecheon area and neighboring area shows 16 % increases. One of VOC, benzene is increased in Cheonggyecheon area compared with neighboring area but Toluene, Ethylbenzene, m+p Xylene increased in neighboring area. After the Cheonggyecheon restoration, The heavy metals are not shows the improvement, but $PM_{10}$ and $NO_2$ concentration improved more than the changes of neighboring area. These improvements of pollution due to reduction of transportation and clearing of elevated road by Cheonggyecheon restoration project.

Highly Ordered Porous Silica Adsorbent with Dual Pore Size Regime for Bulky VOC Gas Sensing

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.181-184
    • /
    • 2013
  • Highly ordered porous materials having mesopores in the walls of macropores showed improved adsorption dynamics results for VOC molecules, especially bulky molecules. These meso/macroporous mataerials were synthesized by the dual templating method, and mesopore and macropore size were controlled by adjusting the templates for each pore size regime. In the case of adsorption and desorption of small VOC molecules (toluene), although meso/macroporous MCM-41 with smaller mesopore size showed improved results, meso/macroporous SBA-15 with larger mesopore size was not improved regardless of the existence of macropores, since there was no limitation of movement through the larger mesopore. However, the adsorption dynamics of bulky VOC molecules (p-xylene) over meso/macroporous SBA-15 were drastically improved by increasing the macropore size.

The Analysis on the VOCs Contents and Ozone Production Contribution of A Marine Paint in Korea (국내 선박용 도료의 VOCs 함량분포 및 오존생성기여도에 관한 연구)

  • Kim, Su Min;Lee, Young Soo;Kang, Kyoung Hee;Yoo, Kyung Seun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.6
    • /
    • pp.569-576
    • /
    • 2014
  • In this research, a few paints in the shipyard were selected and analyzed for the component and ozone production in marine paint using TVOC and GC/FID, ozone generation index (MIR, POCP) to establish measures of $VOC_s$ effectively. The concentrations of TVOC ranged between approximately 300~400 g/L and 400~500 g/L, respectively and these showed 37% of whole. Our results indicated that the main constituents of marine paints were m,p,oxylene (49%), ethyl benzene (10%), toluene (8%) and 2-propanol (5%). It was also found that xylene concentration have relatively higher impact on ozone generation. The types of paints were also investigated for their potentials. The biggest contributor was the 1 Pack Finish paint. The rest is, in their contributing order, 1 Pack Finish paint, 2 pack Finish paint, Anti-fouling paint, 2 Pack A/C paint, Ballast paint and 1 Pack A/C paint.

디젤오염토양의 과산화수소 처리시 중금속 용출 및 백연발생 특성

  • Jang, Na-Yeong;Jeong, Byeong-Gil;No, Gi-Hyeon;Go, Hyeon-Ung;Choe, Yeong-Ik;An, Yeong-Hui;Seong, Nak-Chang
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.443-446
    • /
    • 2008
  • 본 연구는 과산화수소를 이용하여 디젤오염토양의 처리시 중금속 용출특성, 백연가스 발생특성 등을 평가하기 위하여 실험을 하였다. 중금속 용출속도는 반응시간 15분까지 용출이 지속적으로 증가하다가, 15분 이후 점차적으로 감소하는 경향을 보였다. 이러한 과산화수소(H$_2$O$_2$) 처리방법은 토양내 중금속 용출속도를 가속화시켜 실제 현장에서 적용될 경우 이로 인하여 지하수에 심각한 영향을 미칠 수 있으므로 ex-situ 방법 등과 같은 방법을 고려한 2차 오염에 대한 대책이 필요할 것으로 판단된다. 또한, 백연가스의 발생량은 과산화수소의 농도가 높을수록 많이 발생하는 것으로 관찰되었으며, 이는 높은 농도의 과산화수소와 유류오염토양이 급격하게 반응하기 때문인 것으로 판단된다. 백연가스 중 Hexane이 가장 높은 농도로 검출되었으며, 이 외에도 Cyclopentane, Benzene, Ethylbenzene, m,p-Xylene, Undecane 등이 많이 발생하는 것으로 나타났다. 따라서 백연가스 중에 함유된 고농도의 휘발성유기화합물(VOCs)이 주변 환경에 유해한 영향을 미칠 것으로 예상되므로 적절한 대기오염방지시설을 설치하여 제거한 후 대기로 방출하는 것이 필요하다고 판단된다.

  • PDF

Preparation of TiO2:Fe,V nanoparticles by flame spray pyrolysis and photocatalytic degradation of VOCs (화염분무열분해법을 이용한 TiO2:Fe,V 나노분말의 제조 및 VOCs 분해 특성)

  • Chang, Han Kwon;Jang, Hee Dong;Kim, Tae-Oh;Kim, Sun Kyung;Choi, Jin Hoon
    • Particle and aerosol research
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Fe- and V-doped titanium dioxide nanoparticles consisting of spherical primary nanoparticles were synthesized from a mixed liquid precursor by using the flame spray pyrolysis. The effects of dopant concentration on the powder properties such as morphology, crystal structure, and light adsorption were analyzed by TEM, XRD, and UV-Vis spectrophotometer, respectively. As the V/Ti molar ratio increased, pure anatase particles were synthesized. On the contrary, rutile phase particles were synthesized as the Fe/Ti ratio increased. Photocatalytic property of as-prepared $TiO_2:Fe,V$ nanoparticles was investigated by measuring the removal efficiency for volatile organic compounds (VOCs) under the irradiation of visible light. After 2 hrs under visible light, the removal efficiencies of benzene, p-xylene, ethylbenzene, and toluene were reached to 21.9%, 21.4%, 19.8% and 17.6% respectively.

  • PDF