• Title/Summary/Keyword: p-type silicon

Search Result 440, Processing Time 0.03 seconds

RF Characteristics of Open Stubs on PES Substrate for Application to Capacitive Matching Components on Flexible MMIC

  • Yun, Young;Jeong, Jang-Hyeon;Kim, Hong-Seung;Jang, Nak-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.3
    • /
    • pp.142-145
    • /
    • 2015
  • In this work, open stubs were fabricated on a polyether sulfone (PES) substrate, and their basic radio frequency (RF) characteristics were investigated for application to RF matching components of a flexible monolithic microwave integrated circuit (MMIC). According to the results, an open stub employing coplanar waveguide (OSCPW) on PES exhibited much lower loss than that on silicon substrate. The OSCPW with a length of $500{\mu}m$ on PES showed capacitance values of 0.031 ~ 0.044 pF from 0.5 to 50 GHz. For application to a relatively high-value capacitive matching, an open stub employing a fishbone-type transmission line (OSFTTL) was fabricated on PES, and its characteristics were investigated. The OSFTTL showed much higher capacitance values than the OSCPW due to the high effective permittivity value. Specifically, the OSFTTL on PES showed capacitance values of 0.066 ~ 0.24 pF from 0.5 to 50 GHz, which are higher than those for the open stub on silicon substrate. The above results indicate that the OSCPW and OSFTTL on PES can be effectively used for application to low/high-value capacitive matching components on microwave and millimeter wave flexible MMIC. To the best of the authors' knowledge, this work is the first report of the investigation of RF capacitive matching components on PES substrate.

Analysis of metal impurities metal the p-type silicon wafer (P형 실리콘 웨이퍼내의 금속 불순물 분석)

  • Lee, Seong-Ho;Kim, Hong-Rak;Seo, Gwang;Kang, Seong-Geon;Kim, Dong-Su;Ryu, Geun-geol;Hong, Pilyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1995.11a
    • /
    • pp.32-33
    • /
    • 1995
  • 고집적 회로 제작에 사용되는 P-형 실리콘 웨이퍼 내부에 존재하는 금속불순물을 소수캐리어의 여기변화 등을 이용하는 정성적인 SPV 측정과 정량적인 DLTS 측정을 통해서 비교, 분석하였다. 반도체공정상 중요한 오염원이며, 분석이 쉬운 Fe을 주 오염원으로 하여 분석한 결과 SPV와 DLTS에 의한 Fe는 상호연관관계가 성립하며, p-형 실리콘 웨이퍼내의 Fe, FeB 거동을 20$0^{\circ}C$ quenching으로 관찰할 수 있었으며, 각각의 에너지준위는 0.45 및 0.11eV 임을 확인하였다.

  • PDF

Rear Surface Passivation of Silicon Solar Cell with AlON Layer by Reactive Magnetron Sputtering

  • Moon, Sun-Woo;Kim, Eun-Kyeom;Park, Won-Woong;Kim, Kyung-Hoon;Kim, Sung-Min;Kim, Dong-Hwan;Han, Seung-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.430-430
    • /
    • 2012
  • The surface recombination velocity of the silicon solar cell could be reduced by passivation with insulating layers such as $SiO_2$, SiNx, $Al_2O_3$, a-Si. Especially, the aluminium oxide has advantages over other materials at rear surface, because negative fixed charge via Al vacancy has an additional back surface field effect (BSF). It can increase the lifetime of the hole carrier in p-type silicon. The aluminium oxide thin film layer is usually deposited by atomic layer deposition (ALD) technique, which is expensive and has low deposition rate. In this study, ICP-assisted reactive magnetron sputtering technique was adopted to overcome drawbacks of ALD technique. In addition, it has been known that by annealing aluminium oxide layer in nitrogen atmosphere, the negative fixed charge effect could be further improved. By using ICP-assisted reactive magnetron sputtering technique, oxygen to nitrogen ratio could be precisely controlled. Fabricated aluminium oxy-nitride (AlON) layer on silicon wafers were analyzed by x-ray photoelectron spectroscopy (XPS) to investigate the atomic concentration ratio and chemical states. The electrical properties of Al/($Al_2O_3$ or $SiO_2/Al_2O_3$)/Si (MIS) devices were characterized by the C-V measurement technique using HP 4284A. The detailed characteristics of the AlON passivation layer will be shown and discussed.

  • PDF

Structuyal and physical properties of thin copper films deposited on porous silicon (다공성 실리콘위에 증착된 Cu 박막의 구조적 물리적 특성)

  • 홍광표;권덕렬;박현아;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.123-129
    • /
    • 2003
  • Thin transparent Cu films in the thickness range of 10 ~ 40 nm are deposited by rf-magnetron sputtering on porous silicon (PS) anodized on p-type silicon in dark. Microstructural features of the Cu films are investigated using SEM, AFM and XRD techniques. The RMS roughness of the Cu films is found to be around 1.47 nm and the grain growth is columnar with a (111) preferred orientation and follows the Volmer-Weber mode. The photoluminescence studies showed that a broad luminiscence peak of PS near the blue-green region gets blue shifted (~0.05 eV) with a small reduction in intensity and therefore, Cu-related PL quenching is absent. The FTIR absorption spectra on the PS/Cu structure revealed no major change of the native PS peaks but only a reduction in the relative intensity. The I-V characteristic curves further establish the Schottky nature of the diode with an ideality factor of 2.77 and a barrier height of 0.678 eV. An electroluminiscence (EL) signal of small intensity could be detected for the above diode.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Ferroelectric-gate Field Effect Transistor Based Nonvolatile Memory Devices Using Silicon Nanowire Conducting Channel

  • Van, Ngoc Huynh;Lee, Jae-Hyun;Sohn, Jung-Inn;Cha, Seung-Nam;Hwang, Dong-Mok;Kim, Jong-Min;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.427-427
    • /
    • 2012
  • Ferroelectric-gate field effect transistor based memory using a nanowire as a conducting channel offers exceptional advantages over conventional memory devices, like small cell size, low-voltage operation, low power consumption, fast programming/erase speed and non-volatility. We successfully fabricated ferroelectric nonvolatile memory devices using both n-type and p-type Si nanowires coated with organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] via a low temperature fabrication process. The devices performance was carefully characterized in terms of their electrical transport, retention time and endurance test. Our p-type Si NW ferroelectric memory devices exhibit excellent memory characteristics with a large modulation in channel conductance between ON and OFF states exceeding $10^5$; long retention time of over $5{\times}10^4$ sec and high endurance of over 105 programming cycles while maintaining ON/OFF ratio higher $10^3$. This result offers a viable way to fabricate a high performance high-density nonvolatile memory device using a low temperature fabrication processing technique, which makes it suitable for flexible electronics.

  • PDF

MoO3/p-Si Heterojunction for Infrared Photodetector (MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발)

  • Park, Wang-Hee;Kim, Joondong;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.8
    • /
    • pp.525-529
    • /
    • 2017
  • Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

GQD layers for Energy-Down-shift layer on silicon solar cells by kinetic spraying method

  • Lee, Gyeong-Dong;Park, Myeong-Jin;Kim, Do-Yeon;Kim, Su-Min;Gang, Byeong-Jun;Kim, Seong-Tak;Kim, Hyeon-Ho;Lee, Hae-Seok;Gang, Yun-Muk;Yun, Seok-Gu;Hong, Byeong-Hui;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.422.1-422.1
    • /
    • 2016
  • Graphene quantum dots (GQDs), a new kind of carbon-based photo luminescent nanomaterial from chemically modified graphene oxide (CMGO) or chemically modified graphene (CMG), has attracted extensive research attention in the last few years due to its outstanding chemical, optical and electrical properties. To further extended its potential applications as optoelectronic devices, solar cells, bio and bio-sensors and so on, intensive research efforts have been devoted to the CMG. However, the CMG, a suspension of aqueous, have problematic since they are prone to agglomeration after drying a solvent. In this study, we synthesized the GQDs from graphite and deposited on silicon substrate by kinetic spray. The photo luminescent properties of deposited GQD films were analyzed and compared with initial GQDs suspension. In addition, its carbon properties were investigated with GQDs solution properties. The properties of deposited GQD films by kinetic spray were similar to that of the GQDs suspension in water. We could provide a pathway for silicon-based silicon based device applications. Finally, the well-adjusted GQD films with photo luminescence effects will show Energy-Down-Shift layer effects on silicon solar cells. The GQD layers deposited at nozzle scan speeds of 40, 30, 20, and 10 mm/s were evaluated after they were used to fabricate crystalline-silicon solar cells; the results indicate that GQDs play an important role in increasing the optical absorptivity of the cells. The short-circuit current density (Jsc) was enhanced by about 2.94 % (0.9 mA/cm2) at 30 mm/s. Compared to a reference device without a GQD energy-down-shift layer, the PCE of p-type silicon solar cells was improved by 2.7% (0.4 percentage points).

  • PDF

A Study of the Quantitative Relationship of Charge-Density Changes and the Design Area of a Fabricated Solar Cell

  • Jeon, Kyeong-Nam;Kim, Seon-Hun;Kim, Hoy-Jin;Kim, In-Sung;Kim, Sang-Hyun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.204-208
    • /
    • 2011
  • In this paper, the design area of a fabricated solar cell has been analyzed with respect to its charge density. The mathematical calculation used for charge-density derivation was obtained from the 2001 version of a MATHCAD program. The parameter range for the calculations was ${\pm}1{\times}10^{17}cm^{-3}$, which is in the normal parameter range for n-type doping impurities ($7.0{\times}10^{17}cm^{-3}$) and also for p-type impurities ($4.0{\times}10^{17}cm^{-3}$). Therefore, it can be said that the fabricated solar-cell design area has a direct effect on charge-density changes.