DOI QR코드

DOI QR Code

MoO3/p-Si Heterojunction for Infrared Photodetector

MoO3 기반 실리콘 이종접합 IR 영역 광검출기 개발

  • Park, Wang-Hee (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Kim, Joondong (Photoelectric and Energy Device Application Lab, Multidisciplinary Core Institute for Future Energies, Incheon National University) ;
  • Choi, In-Hyuk (KEPCO Research Institute, Korea Electric Power Corporation)
  • 박왕희 (인천대학교 차세대융합에너지중점연구소 광전에너지소자연구실) ;
  • 김준동 (인천대학교 차세대융합에너지중점연구소 광전에너지소자연구실) ;
  • 최인혁 (한국전력공사 전력연구원)
  • Received : 2017.05.10
  • Accepted : 2017.06.25
  • Published : 2017.08.01

Abstract

Molybdenum oxide ($MoO_3$) offers pivotal advantages for high optical transparency and low light reflection. Considering device fabrication, n-type $MoO_3$ semiconductor can spontaneously establish a junction with p-type Si. Since the energy bandgap of Si is 1.12 eV, a maximum photon wavelength of around 1,100 nm is required to initiate effective photoelectric reaction. However, the utilization of infrared photons is very limited for Si photonics. Hence, to enhance the Si photoelectric devices, we applied the wide energy bandgap $MoO_3$ (3.7 eV) top-layer onto Si. Using a large-scale production method, a wafer-scale $MoO_3$ device was fabricated with a highly crystalline structure. The $MoO_3/p-Si$ heterojunction device provides distinct photoresponses for long wavelength photons at 900 nm and 1,100 nm with extremely fast response times: rise time of 65.69 ms and fall time of 71.82 ms. We demonstrate the high-performing $MoO_3/p-Si$ infrared photodetector and provide a design scheme for the extension of Si for the utilization of long-wavelength light.

Keywords

References

  1. J. M. Shieh, Y. F. Lai, W. X. Ni, H. C. Kuo, C. Y. Fang, J. Y. Huang, and C. L. Pan, Appl. Phys. Lett., 90, 051105 (2007). [DOI: https://doi.org/10.1063/1.2450653]
  2. H. S. Bae, M. H. Yoon, J. H. Kim, and S. Im, Appl. Phys. Lett., 83, 5313 (2003). [DOI: http://dx.doi.org/10.1063/1.1633676]
  3. E. Chen and S. Y. Chou, Appl. Phys. Lett., 70, 753 (1997). [DOI: http://doi.org/10.1063/1.118270]
  4. O. M. Nayfeh, S. Rao, A. Smith, J. Therrien, and M. H. Nayfeh, IEEE Photonics Technol. Lett., 16, 1927 (2004). [DOI: https://doi.org/10.1109/LPT.2004.831271]
  5. J. M. Choi and S. Im, Appl. Surf. Sci., 244, 435 (2005). [DOI: https://doi.org/10.1016/j.apsusc.2004.09.152]
  6. M. Zyaei, H. R. Saghai, K. Abbasian, and A. Rostami, Opt. Commun., 281, 3739 (2008). [DOI: https://doi.org/10.1016/j.optcom.2008.03.036]
  7. D. Mutschau, K. Holzner, and E. Obermeier, Sens. Actuators, B, 36, 320 (1996). [DOI: https://doi.org/10.1016/S0925-4005(97)80089-5]
  8. J. Bullock, D. Yan, A. Cuevas, Y. Wan, and C. Samundsett, Energy Procedia, 77, 446 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.063]
  9. C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai, and W. Xie, ACS Appl. Mater. Interfaces, 7, 25981 (2015). [DOI: https://doi.org/10.1021/acsami.5b09492]
  10. J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, Adv. Mater., 15, 1835 (2003). [DOI: https://doi.org/10.1002/adma. 200305528]
  11. W. H. Park, D. K. Ban, H. Kim, H. S. Kim, M. Patel, J. H. Yoo, and J. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 445 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.7.445]
  12. W. H. Park and J. D. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 720 (2016). [DOI: http://dx.doi.org/10.4313/JKEM.2016.29.11.720]
  13. W. S. Choi, Trans. Electr. Electron. Mater., 12, 267 (2011). [DOI: https://doi.org/10.4313/TEEM.2011.12.4.267]