• Title/Summary/Keyword: p-terephthalic acid

Search Result 20, Processing Time 0.022 seconds

Treatment of Polyester Weight Loss Wastewater Using Strains Degrading Ethylene Glycol and Terephthalic Acid (Ethylene Glycol과 Terephthalic Acid 분해균주를 이용한 감량가공폐수처리)

  • 서승교
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.3
    • /
    • pp.43-48
    • /
    • 2001
  • Terephthalic acid and ethylene glycol resulting form the weight-reduction process of polyester make trouble in the operation of activated sludge process. Also, polyester weight loss wastewater shows high pH, high organic strength and wide variation of organic loading. Therefore, this study was conducted in order to improve treatment efficiency by activated sludge process with Pseudomonas sp degrading components of polyester weight loss wastewater. The CO $D_{Mn}$ and BO $S_{5}$ of the waste wastewater were 560~3,000 mg/$\ell$ and 8000~3,000 mg/$\ell$, respectively. pH was 11.8~12.3. COD removal efficiency by activated sludge-coagulation process with Pseudomonas sp was 94.1~95.8% for 35 hr of hydraulic retention time. Total organic carbon removal efficiency was 97.1%. Ethylene glycol and terephthalic acid in the wastewater were completely degraded during 32 hr of hydraulic retention time.e.

  • PDF

호알칼리성 Corynebacterium sp. YT-14를 이용한 감량가공폐수와 종합염색폐수 중의 terephthalic acid 제거

  • Lee, Hyeon-Uk;Im, Dong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.359-360
    • /
    • 2002
  • A bacterial strain able to degrade terephthalic acid (TPA) was isolated and identified to belong to the Corynebacterium sp. It was named Corynebacterium sp. YT-14. When stirred loop bioreactor was used in a batch type system for removing terephthalic acid from weight loss treatment wastewater and complex dyeing process wastwater, the removal efficiency of terephthalic acid was 85.4% after 7 days of treatment of the weight loss treatment wastewater, while no residual terephthalic acid was detected after 3 days of treatment of the complex dyeing process wastewater

  • PDF

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.

New Polyarylates Prepared from 2,5-Bis($\alpha$-phenylisopropyl)hydroquinone, Terephthalic Acid and Isophthalic Acid

  • 진정일;유승주
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.1
    • /
    • pp.17-21
    • /
    • 1995
  • A new series of polyarylate copolyesters were prepared by melt polycondensation of 1,4-diacetoxy-2,5-(α-phenylisopropyl)benzene with mixture of terephthalic acid and isophthalic acid in varying ratio. And their general properties such as the glass transition temperature, crystalline melting temperature, crystallinity and solubility were studied. The intrinsic viscosity values of the present polymers measured in a mixed solvent of phenol/p-chlorophenol/1,1,2,2-tetrachloroethane ranged from 0.45 to 0.66 depending on the composition and molecular weight. The copolyesters containing greater than 20 mole % of isophthalic acid were found to be amorphous, whereas the homopolymer derived from terephthalic acid was semicrystalline with a melting point of 414℃. The glass transition temperatures of the polymers ranged from 165 to 180℃ depending on the composition. The copolyesters containing 50 mole % and greater of isophthalic acid moiety were soluble at room temperature in such common solvents as tetrahydrofuran, chloroform and N,N-dimethylformamide.

Analysis of Organic Impurities in Terephthalic Acid Manufacturing Process (테레프탈산 제조공정 중의 유기불순물 분석)

  • Kim, Dong Bum;Cha, Woonou;Kwak, Kyu Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1204-1208
    • /
    • 1996
  • The organic impurities are formed in the p-xylene oxidation process to terephthalic acid(TPA) and they are present in the filtrate(mother liquor) solution or the TPA particles. The organic impurities present in the p-xylene oxidation are formed through side reactions or incomplete reaction. In this study, the main organic impurities, such as benzoic acid, p-toluic acid, p-tolualdehyde, 4-carboxybenzaldehyde, phthalic acid, isophthalic acid, trimellitic acid, and 4-hydroxymethyl benzoic acid were identified simultaneously by gas chromatograghy. The above impurities were reacted with bis(trimethylsilyl)trifluoroacetamide in the mixture of internal standard solution and pyridine solution by trimethylsilylation, where the internal standard solution was made by 99% bis (trimethylsilyl)trifluoroacetamide and 1% trimethylchlorosilane. The main organic impurities above mentioned can be analyzed quantitatively within 50 min.

  • PDF

Isolation and Characterization of Terephthalic Acid-degrading Bacteria (Terephthalic Acid 분해 세균의 분리 및 특성)

  • 김재화;이창호;우철주;주길재;서승교;박희동
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.2
    • /
    • pp.118-123
    • /
    • 1999
  • A bacterial strain, designated T116, degrading terephthalic acid (TPA) was isolated from the soil around Taegu industrial area into which dye works wastewater flow. The isolate was identified as pseudomonas sp. based on its morphological and physiological characteristics. Degradation of TPA by the strain T116 was confirmed with UV scanning and HPLC. About 90% and 98% of TPA were degraded after 36 and 60 hours, respectively, during the culture in a liquid medium containing 0.1% TPA. Addition of KH2PO4 at a final concentration of 100ppm enhanced the chemical oxygen demand (COD) removal rate about 50% from dye works wastewater by Pseudomonas sp. T116. Optimum pH and temperature for COD reduction from wastewater were 7.0 and 3$0^{\circ}C$, respectively. The bacterium was applied to the continuous culture for the treatment of dye works wastewater whose TPA concentration and CODMn were 2,200ppm and 1,620ppm, respectively. It was observed that 90-95% of COD was eliminated after 4 days culture in the continuous culture with a retention time of 37 or 47 hours.

  • PDF

Hydropurification of Crude Terephthalic Acid over PdRu/Carbon Composite Catalyst (PdRu/Carbon Composite 촉매를 이용한 테레프탈산의 수소화 정제)

  • Jhung, Sung-Hwa;Park, Youn-Seok
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.1
    • /
    • pp.57-63
    • /
    • 2002
  • The hydropurification reaction of CTA (crude terephthalic acid) was carried out with hydrogen over PdRu/CCM (carbon-carbonaceous composite material) catalyst in a batch reactor at high temperature. The first order kinetics of hydropurification is confirmed with the linear dependence of ln(4-CBA; 4-carboxybenzaldehyde) with reaction time. The reaction condition studied is thought to represent the hydropurification well because of the linear dependence of catalytic activity on the catalyst weight. The p-toluic acid (p-tol) in solid and liquid increases with the conversion of reaction or the decrease of 4-CBA. However, the benzoic acid (BA) concentration does not depend much on the conversion. The AT (alkali transmittance) does not depend on the 4-CBA when the concentration is higher than about 0.2% which shows the 4-CBA, in itself, does not cause the coloring effect. The AT of PTA depends inversely with the concentration of 4-CBA when the 4-CBA is less than about 0.15%. This may show the coloring materials are removed in parallel with the hydrogenation of 4-CBA. The (0.3%Pd-0.2%Ru)/CCM shows larger residual catalytic activity than a commercial catalyst, 0.5%Pd/C, after using in a commercial reactor even though the former has smaller fresh activity than the latter. The palladium and ruthenium in PdRu/CCM show the synergetic effect in activity when the ruthenium concentration is about $0.2{\sim}0.35$ wt%. It may be supposed that the PdRu/CCM catalyst can be a promising candidate to replace the commercial Pd/C catalyst.

Liquid Phase Oxidation of Xylenes: Effects of Water Concentration and Alkali Metals

  • Jhung, Sung-Hwa;Lee, Ki-Hwa;Park, Youn-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.59-64
    • /
    • 2002
  • A facile and precise batch oxidation reaction system allows continuous monitoring of the oxidation rate and cumulated oxygen conversion of xylenes, and the side reactions to carbon monoxide and carbon dioxide may also be studied. The oxidation reaction can be analyzed precisely with the rate and amount of oxygen consumed. The reaction reveals that 4-carboxybenzaldehyde is an unstable intermediate of p-xylene oxidation as the reaction proceeds instantaneously from p-toluic acid to TPA (terephthalic acid). The alkali metals accelerate oxidation, even though they retard the reaction initially. The oxidation rate increases with decreasing water concentration. However, in the later part of reaction, the reactivity decreases a bit if the water concentration is very low. This retarding effect of water can be overcome partly by the addition of potassium. The oxidation of o-xylene, compared with the oxidation of p-xylene and m-xylene, proceeds quite fast initially, however, the oxidation rate of xylene isomers in the later stage of reaction is in the order of p-xylene > mxylene > o-xylene.

Synthesis and Properties of Copolyterephthalamides Containing Biphenyl-2,2'-diyl Structure (Biphenyl-2,2'-diyl 구조를 함유하는 Copolyterephthalamides의 합성과 성질)

  • Jeong, Hwa-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2311-2316
    • /
    • 2010
  • Three series of copolyterephthalamides having biphenyl-2,2'-diyl structure in the main chain, were synthesized from p-phenylene-containing diamines such as p-phenylene diamine, 4,4'-oxydianiline or 1,4-bis(4-aminophenoxy)benzene, with mixed diacids of terephthalic acid and 2,2'-bibenzoic acid by the direct polycondensation method. The resulting copolymers had inherent viscosities ranging from 0.46 to 0.93dL/g, and most of them could be readily dissolved in polar aprotic solvents including N,N-dimethyl acetamide and N-methyl-2-pyrrolidone. These copolymers had glass transition temperatures between 239 and $326^{\circ}C$, and their 10% weight loss temperatures were recorded in the range of $410{\sim}485^{\circ}C$ in nitrogen atmosphere.