Liquid Phase Oxidation of Xylenes: Effects of Water Concentration and Alkali Metals

  • Published : 2002.01.20


A facile and precise batch oxidation reaction system allows continuous monitoring of the oxidation rate and cumulated oxygen conversion of xylenes, and the side reactions to carbon monoxide and carbon dioxide may also be studied. The oxidation reaction can be analyzed precisely with the rate and amount of oxygen consumed. The reaction reveals that 4-carboxybenzaldehyde is an unstable intermediate of p-xylene oxidation as the reaction proceeds instantaneously from p-toluic acid to TPA (terephthalic acid). The alkali metals accelerate oxidation, even though they retard the reaction initially. The oxidation rate increases with decreasing water concentration. However, in the later part of reaction, the reactivity decreases a bit if the water concentration is very low. This retarding effect of water can be overcome partly by the addition of potassium. The oxidation of o-xylene, compared with the oxidation of p-xylene and m-xylene, proceeds quite fast initially, however, the oxidation rate of xylene isomers in the later stage of reaction is in the order of p-xylene > mxylene > o-xylene.


  3. Chavan, S. A.; Halligudi, S. B.; Srinivas, D.; Rantnasamy, P. J. Mol. Catal. A 2000, 161, 49
  4. Partenheimer, W. Catal. Today 1995, 23, 69
  5. Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations of Organic Compounds; Academic Press: New York, 1981; Ch. 5 and Ch. 10
  6. Cincotti, A.; Orru, R.; Cao, G. Catal. Today 1999, 52, 331
  7. Cincotti, A.; Orru, R.; Broi, A.; Cao, G. Chem. Eng. Sci. 1997, 52, 4205
  8. Igarashi, J.; Lusztyk, J.; Ingold, K. U. J. Am. Chem. Soc. 1992, 114, 7719
  9. Igarashi, J.; Jensen, R. K.; Lusztyk, J.; Korcek, S.; Ingold, K. U. J. Am. Chem. Soc. 1992, 114, 7727
  10. Roffia, P.; Calina, P.; Tonti, S. Oxidation Comm. 1985/1986, 8, 167
  11. Dugmore, G. M.; Powels, G. J.; Zeelie, B. J. Mol. Catal. A 1995, 99, 1
  12. Partenheimer, W. In Catalysis of Organic Reactions; Kosak, J. R.; Johnson T. A. Eds.; Marcel Dekker: New York, 1994; p. 188
  13. Partenheimer, W.; Kaduk, J. A. Stud. Surf. Sci. Catal. 1991, 66, 613
  14. Partenheimer, W. In Catalysis of Organic Reactions; Blackburn D. W., Ed.; Marcel Dekker: New York, 1990; p. 321
  15. Akhtar, S.; Zaidi, H. Appl. Catal. 1986, 27, 99
  16. Hanotier, J.; Hanotier-Bridoux, M. J. Mol. Catal. 1981, 12, 133
  17. Okada, T.; Kamiya, Y. Bull. Chem. Soc. Jpn. 1979, 52, 3321
  18. Harustiak, M.; Hornec, M.; Ilavsky, J. J. Mol. Catal. 1989, 53, 209
  19. Hronec, M.; Ilavsky, J. React. Kinet. Catal. Lett. 1987, 33, 323
  20. Jacob, B. R.; Varkey, S. P.; Ratnasamy, P. Appl. Catal. A 1999, 182, 91
  21. US Pat. 5 760 288 (1998), to Mitsubishi Chemical Corp.
  22. Yoo, J. S.; Jhung, S. H.; Lee, K. H.; Park, Y-. S. Appl. Catal. A 2002, 223, 239
  23. Gipe, R. K.; Partenheimer, W. Stud. Surf. Sci. Catal. 1997, 110, 117
  24. Chester, A. W.; Scott, E. J. Y.; Landis, P. S. J. Catal. 1977, 46, 308
  25. Chem Systems, Terephthalic acid; 97/98-5, Feb. 1999
  26. Jhung, S. H.;. Lee, K. H.; Park, Y.-S. Appl. Catal. A 2002, in press, 'Effects of alkali metals on the liquid phase oxidation of pxylene'
  27. Reference no. 4, P. 23
  28. Jhung, S. H. unpublished results
  29. Lee, K. H.; Jhung, S. H. unpublished results

Cited by

  1. Selective aerobic oxidation of para-xylene in sub- and supercritical water. Part 1. Comparison with ortho-xylene and the role of the catalyst vol.13, pp.9, 2011,
  2. -Xylene Oxidation to Terephthalic Acid: A Literature Review Oriented toward Process Optimization and Development vol.113, pp.10, 2013,
  3. Waste-Reducing Catalytic Oxidation of m-Xylene to m-Toluic Acid vol.146, pp.7, 2016,