In this article, we establish the $\mathfrak{F}_p$-uniform moderate deviation principles of the sample quantiles and order statistics for a sequence of independent and identically distributed samples.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.418-418
/
2012
현재 전 세계적으로 온실가스 농도 증가로 호우나 가뭄, 대설 등 지역에 따라 서로 상반되는 변화를 가져올 수 있다고 경고되고 있으며, 우리나라에서도 남해안지역과 경기북부지역에서 호우빈도가 증가하는 반면, 충정도 내륙지역과 경상북도에서는 호우빈도가 감소하고 5일 누적 강수량 또한 감소하여, 해당지역에서 가뭄이 발생할 경우 심화될 가능성이 높아진다고 보고된 바 있다. 기후변화 시나리오에 분석결과에서도 우리나라의 경우 평균적으로 강우일수는 작아지며, 강우강도는 커지는 결과들이 도출되었다. 이러한 결과들은 가뭄의 발생가능성이 높아지고 있음을 보여주고 있다. 본 연구에서는 우리나라에서 발생된 가뭄의 특성을 분석하고 가뭄의 특성과 기상인자간의 관계를 Quantile regression 분석을 통해 살펴보고자 한다. 가뭄의 특성과 기상인자(엘니뇨, 강수량 등)의 관계에 있어서 기상인자들의 평균을 이용하는 일반적인 회귀분석은 전체 데이터의 영향에 따른 가뭄특성인자와의 관계를 보여준다. 하지만 강수량과 가뭄과의 관계에서와 같이 강수량의 극값보다는 적은 강수량 혹은 무강우일수가 가뭄과 밀접한 관련을 보여준다. 이러한 점에서 이상치들에 영향을 배재할 수 있는 Quantile regression을 사용하여 Quantile에 따른 기상인자와 가뭄특성과의 관계를 규명하고 평가해 보고자 한다. 본 연구에서 적용한 Quantile Regression 기법은 회귀계수의 추정에 있어서 회귀인자의 신뢰성을 아래와 같은 Quantile-회귀계수 그래프를 통해 분석할 수 있으며, 로버스트 통계량의 특징인 분산이 적은 안정적인 추정량을 확보할 수 있는 장점을 갖는다. 아래식은 Quantile regression의 회귀계수 추정식을 나타낸다. $$arg\;in\;{n\\\;p(y_i-f(x_i,\;z_i,\;{\cdots}))\\ =1}$$ 여기서, $y_i$는 가뭄특성값을 $x_i$, $z_i$, $\cdots$는 기상인자를 나타낸다. $$p(y-q)={{\beta}(y-q)\;y{\geq_-}q \\ (1-{\beta})(q-y)\;y<q}$$${\beta}$는 quantile을 나타내며 0< ${\beta}$ <1범위를 갖는다.
Momenyan, Somayeh;Sadeghifar, Majid;Sarvi, Fatemeh;Khodadost, Mahmoud;Mosavi-Jarrahi, Alireza;Ghaffari, Mohammad Ebrahim;Sekhavati, Eghbal
Asian Pacific Journal of Cancer Prevention
/
v.17
no.sup3
/
pp.113-117
/
2016
Quantile regression is an efficient method for predicting and estimating the relationship between explanatory variables and percentile points of the response distribution, particularly for extreme percentiles of the distribution. To study the relationship between urbanization and cancer morbidity, we here applied quantile regression. This cross-sectional study was conducted for 9 cancers in 345 cities in 2007 in Iran. Data were obtained from the Ministry of Health and Medical Education and the relationship between urbanization and cancer morbidity was investigated using quantile regression and least square regression. Fitting models were compared using AIC criteria. R (3.0.1) software and the Quantreg package were used for statistical analysis. With the quantile regression model all percentiles for breast, colorectal, prostate, lung and pancreas cancers demonstrated increasing incidence rate with urbanization. The maximum increase for breast cancer was in the 90th percentile (${\beta}$=0.13, p-value<0.001), for colorectal cancer was in the 75th percentile (${\beta}$=0.048, p-value<0.001), for prostate cancer the 95th percentile (${\beta}$=0.55, p-value<0.001), for lung cancer was in 95th percentile (${\beta}$=0.52, p-value=0.006), for pancreas cancer was in 10th percentile (${\beta}$=0.011, p-value<0.001). For gastric, esophageal and skin cancers, with increasing urbanization, the incidence rate was decreased. The maximum decrease for gastric cancer was in the 90th percentile(${\beta}$=0.003, p-value<0.001), for esophageal cancer the 95th (${\beta}$=0.04, p-value=0.4) and for skin cancer also the 95th (${\beta}$=0.145, p-value=0.071). The AIC showed that for upper percentiles, the fitting of quantile regression was better than least square regression. According to the results of this study, the significant impact of urbanization on cancer morbidity requirs more effort and planning by policymakers and administrators in order to reduce risk factors such as pollution in urban areas and ensure proper nutrition recommendations are made.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.4
/
pp.107-115
/
2020
Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.
Proceedings of the Korean Association for Survey Research Conference
/
2006.12a
/
pp.67-83
/
2006
In successive sampling on two occasions the problem of estimating a finite population quantile has been considered. The theory developed aims at providing the optimum estimates by combining (i) three double sampling estimators viz. ratio-type, product-type and regression-type, from the matched portion of the sample and (ii) a simple quantile based on a random sample from the unmatched portion of the sample on the second occasion. The approximate variance formulae of the suggested estimators have been obtained. Optimal matching fraction is discussed. A simulation study is carried out in order to compare the three estimators and direct estimator. It is found that the performance of the regression-type estimator is the best among all the estimators discussed here.
In successive sampling on two occasions the problem of estimating a finite population quantile has been considered. The theory developed aims at providing the optimum estimates by combining (i) three double sampling estimators viz. ratio-type, product-type and regression-type, from the matched portion of the sample and (ii) a simple quantile based on a random sample from the unmatched portion of the sample on the second occasion. The approximate variance formulae of the suggested estimators have been obtained. Optimal matching fraction is discussed. A simulation study is carried out in order to compare the three estimators and direct estimator. It is found that the performance of the regression-type estimator is the best among all the estimators discussed here.
Communications for Statistical Applications and Methods
/
v.28
no.6
/
pp.643-653
/
2021
Few studies are found in literature on estimation of population quantiles using the method of ranked set sampling (RSS). The optimal RSS strategy is to select observations with at most two fixed rank order statistics from different ranked sets. In this paper, a near optimal unbalanced RSS model for estimating pth(0 < p < 1) population quantile is proposed. Main advantage of this model is to use each rank order statistics and is distributionfree. The asymptotic relative efficiency (ARE) for balanced RSS, unbalanced optimal and proposed near-optimal methods are computed for different values of p. We also compared these AREs with respect to simple random sampling. The results show that proposed unbalanced RSS performs uniformly better than balanced RSS for all set sizes and is very close to the optimal RSS for large set sizes. For the practical utility, the near optimal unbalanced RSS is recommended for estimating the quantiles.
Purpose: The purpose of this study was to examine factors influencing health related quality of life(HRQOL) in patients with hypertension. Methods: This study carried out secondary analysis using the data from the $5^{th}$ Korean National Health and Nutrition Examination Survey. Subject samples who were selected are 1,240 hypertension patients. The data were analyzed by using descriptive statistics, traditional classic regression, and quantile regression. Results: Restriction of activity, depressive mood, and subjective health status had only significant effects on HRQOL(p<.001). After quantile regression, depressive mood and subjective health status had only significant at 20%(p<.001), 40%(p<.001), and 60%(p<.01) of HRQOL. Perceived stress(p<.001) and regular exercise(p<.01) had only significant at 20% of HRQOL. Current drinking status had only significant at 20%(p<.001) and 80%(p<.01) of HRQOL. Conclusions: Quantile regression maybe a better statistical tool in understanding the heterogeneous effect of hypertension patient's HRQOL as health outcome. Therefore interventions are needed for patients with hypertension to manage each of the factors affecting the patient's perceived health status by each quantile.
Background: This study aimed to examine the factors that influence clinical performance of dental hygiene students to provide useful data for developing strategies to improve clinical competence. Methods: The effects of variables on clinical competence by quantile level were analyzed using quantile regression analysis in 247 dental hygiene students. Quantile regression and multiple regression analyses were conducted using the Stata 11.0 program to analyze predictors of clinical competence. Results: The clinical competence score of dental hygiene students was 42.69±5.90, the satisfaction of clinical practice was 49.90±7.44, the clinical practice stress was 50.62±7.37, and the professional self-concept was 31.68±4.41. Empathy was the highest at 50.87±4.93. Multiple regression analysis showed that school year, stress from clinical training, satisfaction with clinical training, professional self-concept, and empathy had significant impact on clinical competence. Quantile regression analysis showed that the effects varied depending on the clinical competence level. School year and professional self-concept had a significant positive effect, regardless of the clinical competence level, while empathy had a significant positive effect at the top 10% (Q90) of the clinical competence level. Satisfaction with clinical practice affected clinical competence at Q25, Q50, and Q90. Stress from clinical practice had significant effects at Q25, Q50, and Q90 (p<0.05). Conclusion: According to the study results, different factors affected clinical competence according to the quantile of clinical competence. This study provides valuable implications for designing clinical competence enhancement programs and strategies. In addition, objective indicators for considering factors that may affect the clinical competence, such as academic competence and satisfaction of practice hospitals, are expected to require detailed analysis and measures.
Purpose: The purpose of this study was to determine gender differences in effects of self-efficacy, exercise benefits and barriers, and demographic factors on the physical activity. Methods: Seventy sedentary office workers, 35 male and 35 female, from a major airline company, completed a questionnaire from March 28 to April 5, 2012. Steps and body mass indices were measured using a CW-700/701 (Yamax) pedometer and Inbody 720 (Biospace), respectively. Data were analyzed using t-test, $x^2$-test, multiple linear regression, and simultaneous quantile regression. Results: For male workers, exercise self-efficacy had a significant effect on physical activity, but only when respondents were at 10%(3,431 steps/day, p=.018) and 25%(4,652 steps/day, p=.044) of the physical activity distribution. For female workers, marital status was significantly related to physical activity, but only when respondents were at 10% (3,537 steps/day, p=.013) and 25%(3,862 steps/day, p=.014) of the physical activity distribution. Conclusion: Quantile regression highlights the heterogeneous effect of physical activity determinants among office workers. Therefore intervention strategies for increasing physical activity should be tailed to genders as well as physical activity levels.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.