• 제목/요약/키워드: p-nitrophenol

Search Result 92, Processing Time 0.024 seconds

Suppression of Lipid Peroxidation and CYP Isozymes activities by Circium japonicum Herbal-acupuncture Solution ; Basic Study for Screening of Medicinal Herb on Reactive Oxygen Radical and CYP-Mediated Atherosclerosis (대계 약침액(藥鍼液)의 지질과산화 및 CYP 억제에 미치는 영향(影響) ; 활성산소자유기 및 CYP 매개의 동맥경화 치료를 위한 천연약물 개발의 기초 평가)

  • Lee Jeong-Joo;Kim Hyuck;Yi Hyo-Seung;Park Won-Hwan;Moon Jin-Young
    • Korean Journal of Acupuncture
    • /
    • v.23 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • 목적 : 약침액(藥鐵液)의 지질과산화 예방 및 cytocome P450과의 상호 작용에 있어서 대계의 역할은 과거 연구가 거의 없었다. 따라서 본 실험에서는 대계 약침액이 지질과산화를 예방하고, 심혈관계질환 유발에 밀접한 연관이 있는 cytochrome P450의 직접적인 저해 효과를 검토 하고자 한다. 방법 : 대계 약침액이 지질과산화를 억제하는 정도를 평가하기 위하여 세포막을 구성하는 불포화지방산의 일종인 linoleic acid를 대상으로 지질과산화 진행 시간과 대계 약침액의 농도에 의존적인 저해 효과를 실험하였다. 또한 실험쥐의 간조직을 이용하여, 강제적인 과산화를 유도한 후 이를 방어하는 효능을 검토하였다. 그리고 cytochrome P450을 구성하는 그룹의 1A1, 1A2 및 2E1의 활성을 각각 EROD, MROD, p-nitrophenol, aniline 방법으로 측정하였다. 결과 및 결론 : 대계 약침액은 세포막 구성의 불포화 지방산인 linoleic acid의 산화를 시간 및 처리 농도에 의존적으로 억제하였고, 실험쥐의 조직 과산화를 유의성 있게 저해하였다. 또한 aryl hydrocarbon receptor (AHR)을 활성화 시켜 polycyclic aromatic hydrocarbons (PAHs)에 의한 심혈관계 질환 유발 인자로 알려진 cytochrome P450 1A1 및 1A2의 발현을 일부 저해하였으며, 특히 체내에 흡수된 알콜 대사에 관여하는 P450 2E1을 강하게 억제 시켰다.

  • PDF

Effect of Onion Extract on the Carbon Tetrachloride-induced Liver Injury in Mouse

  • Lee, Kyung-Jin;Kim, Deok-Song;Kim, Jong-Sun;Chin, Jong-Eun;Kim, Jun-Ho;Na, Myung-Suk;Lee, Jong-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.2
    • /
    • pp.130-136
    • /
    • 2003
  • The protective effects of onion extract (OE), onion powder extracted in ethanol for 2 days. on carbon tetrachloride ($CCl_4$)-induced hepatotoxicities and the possible mechanisms involved in this protection were investigated in mice. Pretreatment with OE prior to the administration of $CCl_4$ significantly reduced the increase in serum alanine and aspartate aminotransferase activities and hepatic lipid peroxidation in a dose-dependent manner. In addition, pretreatment with OE significantly prevented the depletion of reduced glutathione content in the liver of $CCl_4$-intoxicated mice. $CCl_4$-induced hepatotoxicity was also prevented, as indicated by a liver histopathologic findings. The effects of OE on the cytochrome P450 (P450) 2E1, the major isozyme involved in $CCl_4$ biotransformation were investigated. Treatment of mice with OE resulted in a significant decrease in P450 2E1-dependent p-nitrophenol and aniline hydroxylation in a dose-dependent manner. Consistent with these observations, the P450 2E1 expressions were also decreased, as determined by immunoblot analysis. OE also exhibited antioxidant effects in FeCl$_2$-ascorbate induced lipid peroxidation in rat liver homogenates and in superoxide radical scavenging activity. These results show that the protective effects of OE against the $CCl_4$-induced hepatotoxicity may be due to its ability to block bioactivation of $CCl_4$, mainly tty inhibiting the expression and activities of P450 2E1 and by scavenging free radicals.

Characterization of $\beta$-1,4-D-Glucan Glucanohydrolase Purified from Trichoderma koningii (Trichoderma koningii에서 분리한 $\beta$-1,4-D-glucan glucanohydrolase의 특성)

  • 임대식;정춘수;강사욱;하영칠
    • Korean Journal of Microbiology
    • /
    • v.29 no.2
    • /
    • pp.85-91
    • /
    • 1991
  • .betha.-1,4-D-Glucan glucanohydrolase(EC 3.2.1.4;F-II-IV) purified from Trichoderma koningii was identified as a glycoprotein containing 9% carbohydrate. Isoelectric point of the enzyme was estimated to be 4.9 and molecular weight was determined to be approximately 58,000. The porducts of p-nitrophenyl-cellobioside ($PNPG_{2}$) catalyzed by the enzyme were p-nitrophenol(PNP) and p-nitrophenyl-glucoside($PNPG_{1}$). The Km value for $PNPG_{2}$ was estimated to be 0.97 mM in case of the holoside lindage and 10.4 mM in case of the aglycon linkage and their kcat values were $1.8*10^{5}$$ min^{-1}$ and $7.5*10^{5}$ $min^{-1}$ respectively. The product of p-nitrophenyl cellotriose($PNPG_{3}$) was only $PNPG_{1}$. The Km value for $PNPG_{3}$ was 69.5 .$\mu$M and kcat was $1*10^{8}$ $min^{-1}$ which implicates that the enzyme have higher affinity and higher hydrolysis rate toward $PNPG_{3}$ than toward $PNPG_{2}$. The enzyme showed its optimal activity at pH 4.0-4.5 and at 60.deg.C. The effect of gluconolactone on the activity toward $PNPG_{2}$ showed competitive inhibition pattern but glucose and cellobiose did not. The enzyme contained a high content of acidic and hydroxylated amino acids in contrast to basic amino acids.

  • PDF

Dual Application of p-Nitrophenol Alkanoate-Based Assay for Soil Selection and Screening of Microbial Strains for Bioplastic Degradation

  • Nara Shin;Jinok Oh;Suwon Kim;Yeda Lee;Yuni Shin;Suhye Choi;Shashi Kant Bhatia;Yung-Hun Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1530-1543
    • /
    • 2024
  • With an increase in the commercialization of bioplastics, the importance of screening for plastic-degrading strains and microbes has emerged. Conventional methods for screening such strains are time-consuming and labor-intensive. Therefore, we suggest a method for quickly and effectively screening plastic-degrading microbial strains through dual esterase assays for soil and isolated strains, using p-nitrophenyl alkanoates as substrates. To select microbe-abundant soil, the total amount of phospholipid fatty acids (PLFAs) included in each soil sample was analyzed, and esterase assays were performed for each soil sample to compare the esterase activity of each soil. In addition, by analyzing the correlation coefficients and sensitivity between the amount of PLFAs and the degree of esterase activity according to the substrate, it was confirmed that substrate pNP-C2 is the most useful index for soil containing several microbes having esterase activity. In addition, esterase assays of the isolated strains allowed us to select the most active strain as the degrading strain, and 16S rRNA results confirmed that it was Bacillus sp. N04 showed the highest degradation activity for polybutylene succinate (PBS) as measured in liquid culture for 7 days, with a degradation yield of 99%. Furthermore, Bacillus sp. N04 showed degradation activity against various bioplastics. We propose the dual application of p-nitrophenyl alkanoates as an efficient method to first select the appropriate soil and then to screen for plastic-degrading strains in it, and conclude that pNP-C2 in particular, is a useful indicator.

Catalytic Hydrogen Transfer Reduction of Aromatic Nitro Compounds with 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 방향족 니트로 화합물의 환원반응)

  • Kim, Hong-Seok;Kim, Dong Il;Kim, Cheong-Sig;Joo, Young Je
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.871-877
    • /
    • 1994
  • Most of the aromatic nitro compounds were reduced to amines in high yield by transfer of hydrogen from 4-vinyl cyclohexene to the substrate via palladium catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups such as -OH, $-OCH_3$, $-CH_3$, $-CO_2H$, and -Cl, except for halogen which is removed during hydrogenation. The reduction of ortho-substituted nitrobenzene such as o-nitrotoluene, o-nitrophenol, o-nitroanisole was slower than the para isomer. Typically, the nitro compound is refluxed in ethanol with a large exess of 4-vinylcyclohexene in the presence of Pd-C catalyst. Under the above conditions, p-nitrobenzaldehyde, p-nitrobenzyl alcohol, and p-nitrobenzyl acetate were reduced to p-toluidine.

  • PDF

An organofunctionalized MgO∙SiO2 hybrid support and its performance in the immobilization of lipase from Candida rugosa

  • Kolodziejczak-Radzimska, Agnieszka;Zdarta, Jakub;Ciesielczyk, Filip;Jesionowski, Teofil
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2220-2231
    • /
    • 2018
  • Lipase from Candida rugosa was immobilized on $MgO{\cdot}SiO_2$ hybrid grafted with amine, thiol, cyano, phenyl, epoxy and carbonyl groups. The products were analyzed using Fourier transform infrared spectroscopy, nuclear magnetic resonance, low-temperature $N_2$ sorption and elemental analysis. Additionally, the degree of coverage of the oxide material surface with different functional groups and the number of surface functional groups were estimated. The Bradford method was used to determine the quantity of immobilized enzyme. The largest quantity of enzyme (25-28 mg/g) was immobilized on the hybrid functionalized with amine and carbonyl groups. On the basis of hydrolysis reaction of p-nitrophenyl palmitate to p-nitrophenol, it was determined how the catalytic activity of the obtained biocatalysts is affected by pH, temperature, storage time, and repeated reaction cycles. The best results for catalytic activity were obtained for the lipase immobilized on $MgO{\cdot}SiO_2$ hybrids with amine and carbonyl groups. The biocatalytic system demonstrated activity above 40% in the pH range 4-10 and in the temperature range $30-70^{\circ}C$. Lipase immobilized on the $MgO{\cdot}SiO_2$ systems with amine and epoxy groups retains, respectively, around 80% and 60% of its initial activity after 30 days of storage, and approximately 60-70% after 10 reaction cycles.

Porosity and Liquid-phase Adsorption Characteristics of Activated Carbons Prepared From Peach Stones by $H_3PO_4$

  • Attia, Amina A.;Girgis, Badie S.;Tawfik, Nady A.F.
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.89-95
    • /
    • 2005
  • Crushed peach stone shells were impregnated with $H_3PO_4$ of increasing concentrations (30-70%) followed by heat treatment at 773 K for 3 h. Produced carbons (ACs) were characterized by $N_2$ adsorption at 77 K using the BET-equation and the ${\alpha}$-method. High surface area microporous ACs were obtained, with enhanced internal pore volume, as function of % $H_3PO_4$. Adsorption isotherms from aqueous solution were determined for methylene blue (MB) and p-nitrophenol (PNP), as representatives for dye and phenolics pollutant molecules. Application of the Langmuir model proved the high limiting capacity towards both solute molecules, MB was uptaken in increasing amounts as function of $H_3PO_4$ concentration and generated porosity. High removal of PNP was almost the same irrespective of porosity characteristics. Competitive adsorption of $H_2O$ molecules on the hydrophilic carbon surface seems to partially reduce the available area to the PNP molecules. Application of the pseudo-second order law described well the fast adsorption (${\leq}$ 120 min) at two initial dye concentrations.

  • PDF

Effect of Ginseng Saponins on $K^+-Dependent$ Phosphatase Activity of Dog Cardiac Sarcolemma (인삼 사포닌이 개 심실 형질막의 $K^+$-의존성 포스파타제 활성에 미치는 영향)

  • Lee, Shin-Woong;Lee, Jeung-Soo
    • YAKHAK HOEJI
    • /
    • v.36 no.2
    • /
    • pp.129-136
    • /
    • 1992
  • The effects of ginseng saponins, gypsophila saponin, sodium dodecyl sulfate(SDS), and Triton X-100 on membrane $K^+-dependent$ phosphatase activity which is lipid dependent and represents dephosphorylation step of the complete Na+, $K^+-ATPase$ reaction were investigated in this study to elucidate whether the effects of ginseng saponins are due to the detergent action, using sarcolemma enriched preparation isolated from dog ventricle. $Na^+$, $K^+-ATPase$ and $K^+-dependent$ phosphatase activities of cardiac sarcolemma were about $143\;{\mu}mol$ Pi/mg protein/hr and $34\;{\mu}mol$ p-nitrophenol/mg protein/hr, respectively. While ginseng saponins (triol>total>diol) inhibited $K^+-dependent$ phosphatase activity, gypsophila saponin, and low dose of SDS($0.4\;{\mu}g/{\mu}g$ protein), and Triton X-100 ($0.6\;{\mu}g/{\mu}g$ protein) increased the enzyme activity, indicating disruptive effect of detergents on membrane barriers. The activating effect of low doses of Triton X-100 on membrane $K^+-dependent$ phosphatase appeared at concentration decreasing light scattering. However, the inhibitory effect of ginseng saponin appeared before a decrease in light scattering. These results suggest that low concentrations of ginseng saponins inhibit the membrane $K^+-dependent$ phosphatase by interacting directly with enzyme before membrane disruption.

  • PDF

Gender Differences in Activity and Induction of Hepatic Microsomal Cytochrome P-450 by 1-Bromopropane in Sprague-Dawley Rats

  • Kim, Ki-Woong;Kim, Hyeon-Yong;Park, Sang-Shin;Jeong, Hyo-Seok;Park, Sang-Hoi;Lee, Jun-Yeon;Jeong, Jae-Hwang;Moon, Young-Hahn
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.232-238
    • /
    • 1999
  • Sex differences in the induction of microsomal cytochrome P-450 (CYP) and the activities of several related enzymes of Sprague-Dawley rats treated with 1-bromopropane (1-BrP) were investigated. Male and female rats were exposed to 50, 300, and 1800 ppm of 1-BrP per kg body weight (6 h a day,S days a week, 8 weeks) by inhalation. The mean body weight of 1-BrP treated groups increased according to the day elapsed, but four and five weeks respectively after the start of the exposure, the mean body weight of male and female rats had significantly reduced in the group treated with 1800 ppm 1-BrP compared with the control group (p<0.01). While the relative weights of liver increased in both sexes, statistical significance in both sexes was found only in the group receiving 1800 ppm/kg of 1-BrP (p<0.01). The total contents of CYP, $b_5$, NADPH-P-450 reductase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-dealkylase (PROD), and p-nitrophenol hydroxylase (pNPH) activities were examined for the possible effects of 1-BrP. No significant changes in the CYP and $b_5$ contents, NADPH-P-450 reuctase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), and pentoxyresorufin- O-dealkylase (PROD) were observed between the control and treated groups. The activity of pNPH increased steadily with the increase in the concentration of 1-BrP in both sexes, but was significantly increased only in the 1800 ppm-treated group of male rats (p<0.05). When Western blottings were carried out with three monoclonal antibodies (MAb 1-7-1, MAb 2-66-3, and MAb 1-98-1) which were specific against CYP1A1/2, CYP2B1/2, and CYP2E1, respectively, a strong signal corresponding to CYP2E1 was observed in microsomes obtained from rats treated with 1-BrP. Glutathione S-transferase (GST) activity and the content of lipid peroxide significantly increased in the treated groups compared with the control group (p<0.05). These results suggest that 1-BrP can primarily induce CYP2E1 as the major form and that GST phase II enzymes play important roles in 1-BrP metabolism, showing sex-dependence in the metabolic mechanism of 1-BrP in the rat liver.

  • PDF

Protective Effects of Diallyl Sulfide against Thioacetamide-Induced Toxicity: A Possible Role of Cytochrome P450 2E1

  • Kim, Nam Hee;Lee, Sangkyu;Kang, Mi Jeong;Jeong, Hye Gwang;Kang, Wonku;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.149-154
    • /
    • 2014
  • Effects of diallyl sulfide (DAS) on thioacetamide-induced hepatotoxicity and immunotoxicity were investigated. When male Sprague-Dawley rats were treated orally with 100, 200 and 400 mg/kg of DAS in corn oil for three consecutive days, the activity of cytochrome P450 (CYP) 2E1-selective p-nitrophenol hydroxylase was dose-dependently suppressed. In addition, the activities of CYP 2B-selective benzyloxyresorufin O-debenzylase and pentoxyresorufin O-depentylase were significantly induced by the treatment with DAS. Western immunoblotting analyses also indicated the suppression of CYP 2E1 protein and/or the induction of CYP 2B protein by DAS. To investigate a possible role of metabolic activation by CYP enzymes in thioacetamide-induced hepatotoxicity, rats were pre-treated with 400 mg/kg of DAS for 3 days, followed by a single intraperitoneal treatment with 100 and 200 mg/kg of thioacetamide in saline for 24 hr. The activities of serum alanine aminotransferase and aspartate aminotransferase significantly elevated by thioacetamide were protected in DAS-pretreated animals. Likewise, the suppressed antibody response to sheep erythrocytes by thioacetamide was protected by DAS pretreatment in female BALB/c mice. Taken together, our present results indicated that thioacetamide might be activated to its toxic metabolite(s) by CYP 2E1, not by CYP 2B, in rats and mice.