• Title/Summary/Keyword: p-n heterojunction

Search Result 104, Processing Time 0.03 seconds

Electrical characterization of n-ZnO/p-Si heterojunction diode grown by MOCVD (MOCVD를 이용해 성장한 n-ZnO/p-Si 이종접합 다이오드의 전기적 특성 평가)

  • Han, Won-Seok;Gong, Bo-Hyeon;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.143-144
    • /
    • 2007
  • 저온 성장이 가능한 MOCVD를 이용하여 단결정 p-Si 기판위에 n-ZnO를 산소분압을 달리하여 성장하였다. 산소유량에 따른 이종접합 다이오드의 전기적 특성을 평가하기위하여 n-ZnO의 전기전도도, 이동도, 캐리어 농도를 측정하였으며, 소자에 저항성 접촉(ohmic contact) 전극을 형성하여 전류-전압 특성을 파악하였다.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Bang, Seong-Sik;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

p-n heterojunction composed of n-ZnO/p-Zn-doped InP (n-ZnO/p-Zn doped InP의 p-n 이종접합 형성에 관한 연구)

  • 심은섭;강홍성;강정석;방성식;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.126-129
    • /
    • 2001
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process ws performed by pulsed laser deposition (PLD). The p-n junction was formed and showed a typical I-V characteristic. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

  • PDF

Synthesis and Characterization of Thiophene-Based Copolymers Containing Urethane and Alkyl Functional Side Chains for Hybrid Bulk Heterojunction Photovoltaic Cell Applications

  • Im, Min-Joung;Kim, Chul-Hyun;Song, Myung-Kwan;Park, Jin-Su;Lee, Jae-Wook;Gal, Yeong-Soon;Lee, Jun-Hee;Jin, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.559-565
    • /
    • 2011
  • The following noble series of statistical copolymers, poly[(2-(3-thienyl)ethanol n-butoxycarbonylmethylurethane)-co-3-hexylthiophene] (PURET-co-P3HT), were synthesized by the chemical dehydrogenation method using anhydrous $FeCl_3$. The structure and electro-optical properties of these copolymers were characterized using $^1H$-NMR, UV-visible spectroscopy, elemental analysis, GPC, DSC, TGA, photoluminescence (PL), and cyclic voltammetry (CV). The statistical copolymers, PURET-co-P3HT (1:0, 2:1, 1:1, 1:2, 1:3), were soluble in common organic solvents and easily spin coated onto indium-tin oxide (ITO) coated glass substrates. Hybrid bulk heterojunction photovoltaic cells with an ITO/G-PEDOT/PURET-co-P3HT:PCBM:Ag nanowires/$TiO_x$/Al configuration were fabricated, and the photovoltaic cells using PURET-co-P3HT (1:2) showed the best photovoltaic performance compared with those using PURET-co-P3HT (1:0, 2:1, 1:1, 1:3). The optimal hybrid bulk heterojunction photovoltaic cell exhibits a power conversion efficiency (PCE) of 1.58% ($V_{oc}$ = 0.82 V, $J_{sc}$ = 5.58, FF = 0.35) with PURET-co-P3HT (1:2) measured by using an AM 1.5 G irradiation (100 mW/$cm^2$) on an Oriel Xenon solar simulator (Oriel 300 W).

The Effects of Lithium-Incorporated on N-ZTO/P-SiC Heterojunction Diodes by Using a Solution Process (용액공정으로 제작한 리튬 도핑된 N-ZTO/P-SiC 이종접합 구조의 전기적 특성)

  • Lee, Hyun-Soo;Park, Sung-Joon;An, Jae-In;Cho, Seulki;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.203-207
    • /
    • 2018
  • In this work, we investigate the effects of lithium doping on the electric performance of solution-processed n-type zinc tin oxide (ZTO)/p-type silicon carbide (SiC) heterojunction diode structures. The proper amount of lithium doping not only affects the carrier concentration and interface quality but also influences the temperature sensitivity of the series resistance and activation energy. We confirmed that the device characteristics vary with lithium doping at concentrations of 0, 10, and 20 wt%. In particular, the highest rectification ratio of $1.89{\times}107$ and the lowest trap density of $4.829{\times}1,022cm^{-2}$ were observed at 20 wt% of lithium doping. Devices at this doping level showed the best characteristics. As the temperature was increased, the series resistance value decreased. Additionally, the activation energy was observed to change with respect to the component acting on the trap. We have demonstrated that lithium doping is an effective way to obtain a higher performance ZTO-based diode.

An Efficient Current-Voltage Model for the AlGaAs/GaAs N-P Heterojunction Diode and its Application to HPTs

  • Park, Jae-Hong;Kwack, Kae-Dal
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.99-105
    • /
    • 1997
  • The new classified model for N-p heterojunction diode is derived and used extensively in analyzing the current-voltage(I-V) characteristics of the HBTs. A new classification method is presented in order to simplify I-V equations and easily applied to the modeling of HBTs. This classification method is characterized by the properties of devices such as high level injection, the thickness of one or both bulk regions, the surface recombination and the generation-recombination. The simulation results using the proposed model agree well with the experimentally observed I-V behaviors and show good efficiencies in its application to HBTs with respect to mathematical formulation.

  • PDF

Electrodeposited Cuprous oxide based p-n junction for photovoltaic devices with atomic layer deposited ZnO layers

  • Baek, Seung-Gi;Lee, Gi-Ryong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.181-182
    • /
    • 2013
  • 저온 공정을 통한 저가형의 태양전지를 만들기 위해 ALD 공정 법으로 Zinc oxide의 전도성을 조절하여 전기 증착법을 통해 성장시킨 Cuprous oxide와 p-n heterojunction을 구성하고 태양전지를 제작하였을 때 최적의 효율을 확인하였다. 전도성이 낮아질수록 전착법과의 p-n junction에서의 Jsc값이 증가하여 100도의 Zinc oxide의 경우 0.13%의 태양전지 효율을 보였다.

  • PDF

Effect of Short Circuit Current Enhancement in Solar Cell by Quantum Well Structure and Quantitative Analysis of Elements Using Secondary Ion Mass Spectrometry (양자우물구조에 의한 태양전지 단락전류 증가 효과와 이차이온 질량분석법에 의한 원소 정량 분석)

  • Kim, Junghwan
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.499-503
    • /
    • 2019
  • Characteristics of solar cells employing a lattice matched GaInP/GaAs quantum well (QW) structure in a single N-AlGaInP/p-InGaP heterojunction (HJ) were investigated and compared to those of solar cells without QW structure. The epitaxial layers were grown on a p-GaAs substrate with $6^{\circ}$ off the (100) plane toward the <111>A. The heterojunction of solar cell consisted of a 400 nm N-AlGaInP, a 590 nm p-GaInP and 14 periods of a 10 nm GaInP/5 nm GaAs for QW structure and a 800 nm p-GaInP for the HJ structure (control cell). The solar cells were characterized after the anti-reflection coating. The short-circuit current density for $1{\times}1mm^2$ area was $9.61mA/cm^2$ for the solar cell with QW structure while $7.06mA/cm^2$ for HJ control cells. Secondary ion mass spectrometry and external quantum efficiency results suggested that the significant enhancement of $J_{sc}$ and EQE was caused by the suppression of recombination by QW structure.

p-n Heterojunction Composed of n-ZnO/p-Zn-doped InP

  • Shim, Eun-Sub;Kang, Hong-Seong;Kang, Jeong-Seok;Pang, Seong-Sik;Lee, Sang-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.1-3
    • /
    • 2002
  • A p-n junction was obtained by the deposition of an n-type ZnO thin film on a p-type Zn-doped InP substrate. The Zn-doped InP substrate has been made by the diffusion of Zn with sealed ampoule technique. The ZnO deposition process was performed by pulsed laser deposition (PLD). The p-n junction was formed and showed typical I-V characteristics. We will also discuss about the realization of an ultraviolet light-emitting diode (LED). The structure of n-ZnO/p-Zn-doped InP could be a good candidate for the realization of an ultraviolet light-emitting diode or an ultraviolet laser diode.

Fabrication and Characterization of CuO Thin Film/ZnO Nanorods Heterojunction Structure for Efficient Detection of NO Gas (일산화질소 가스 검출을 위한 CuO 박막/ZnO 나노막대 이종접합 구조의 제작 및 특성 평가)

  • Yoo, Hwansu;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2018
  • We report on the efficient detection of NO gas by an all-oxide semiconductor p-n heterojunction diode structure comprised of n-type zinc oxide (ZnO) nanorods embedded in p-type copper oxide (CuO) thin film. The CuO thin film/ZnO nanorod heterostructure was fabricated by directly sputtering CuO thin film onto a vertically aligned ZnO nanorod array synthesized via a hydrothemal method. The transport behavior and NO gas sensing properties of the fabricated CuO thin film/ZnO nanorod heterostructure were charcterized and revealed that the oxide semiconductor heterojunction exhibited a definite rectifying diode-like behavior at various temperatures ranging from room temperature to $250^{\circ}C$. The NO gas sensing experiment indicated that the CuO thin film/ZnO nanorod heterostructure had a good sensing performance for the efficient detection of NO gas in the range of 2-14 ppm under the conditions of an applied bias of 2 V and a comparatively low operating temperature of $150^{\circ}C$. The NO gas sensing process in the CuO/ZnO p-n heterostructure is discussed in terms of the electronic band structure.