• Title/Summary/Keyword: p-atom

Search Result 337, Processing Time 0.02 seconds

Catalytic Hydrogenation of Unsaturated Organic Compounds by Rutheniumhydridonitrosyl Complexes (Rutheniumhydridonitrosyl 착물을 이용한 불포화 유기화합물의 수소화 반응)

  • Park, Mi Young;Kim, Young Joong;Cho, Ook Jae;Lee, Ik Mo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.445-452
    • /
    • 1996
  • Catalytic hydrogenation of ketones and aldehydes by RuH(NO)$L_3$ ($L_3$: $PPh_3$, PhP($CH_2CH_2PPh_2$)$_2$(etp)) was investigated to examine the reaction mechanism and the competence of hydridonitrosyl complexes as catalysts for organic synthesis. RuH(NO)$L_3$ showed catalytic activity for the hydrogenation and the activities of catalysts were dependent on the steric and electronic factors. The less the steric demands of the substrates become, the more activity the catalysts show. For the electronic effect, the more the partial positive charge on the carbonyl carbon atom in ketones becomes and the more the double bond character of carbonyl group in aldehydes becomes, the more active the catalysts are. These results reflect the difference of reaction mechanisms of two substrates, ketones and aldehydes. Catalytic activities of RuH(NO)(etp) and RuH(NO)($PPh_3$)$_3$ in the presence of extra $PPh_3$ toward hydrogenation showed the existence of a reaction pathway accompanied with the change of the bonding modes of NO ligand. The roles of excess $PPh_3$ change with increase of the mole ratio of $PPh_3$ to catalysts; prevention of ligand dissociation from comlexes → bases → ligands. The activity of RuH(NO)(etp) was lower than that of RuH(NO)($PPh_3$)$_3$ toward the hydrogenation of the same substrates mainly due to the structural difference. These catalysts showed the selectivity toward olefin hydrogenation over carbonyl groups in the competitive reaction.

  • PDF

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF

Influence of Sustain Electrode Gap on Excited Xenon Atom in the Metastable State by Laser Absorption Spectroscopy in AC PDP (AC PDP에서 레이저 흡수법을 이용한 유지전극의 위치에 따른 제논 여기종 원자의 밀도 측정)

  • Lee, J.H.;Lim, J.E.;Lee, H.J.;Son, C.G.;Jeong, S.H.;Lee, S.B.;Yoo, N.L.;Han, Y.G.;Oh, P.Y.;Moon, M.W.;Ko, B.D.;Jeoung, J.M.;Moon, H.S.;Park, K.D.;Ahn, J.C.;Hong, J.W.;Cho, G.S.;Choi, E.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • PDP 방전 셀의 최적화 및 진공자외선 발광효율을 향상시키기 위한 목적으로 AC - PDP 미소방전에서 제논 여기종 원자의 밀도를 측정하는 레이저 흡수법을 개발하였다. 본 연구에서는 PDP 셀의 기체 압력을 350Torr, 제논 함량 10%로 고정하고, 전극 위에서의 여러 위치에서 준안정 준위 제논의 밀도를 흡수법으로 측정하였다. 실험 결과 제논 여기종의 밀도의 최대값은 전극의 위치(가장자리에서 안쪽으로의 거리)가 $50{\mu}m$, $120{\mu},\;150{\mu}m$ 일 때 $3.5{\times}10^{12}cm^{-3}$, $2.8{\times}10^{12}cm^{-3}$, $2.2{\times}10^{12}cm^{-3}$로 나타났다.

  • PDF

The Geometrical Isomerization on Acidification in Hexamolybdoheteropoly Oxometalate. The Crystal Structure of $(NH_{4})_{4.5}[H_{3.5}\alpha-PtMo_{6}O_{24}].\;1.5H_{2}O,\;(NH_{4})_{4}[H_{4}\beta-PtMo_{6}O_{24}].\;1.5H_{2}O,\;and\;K_{3.5}[H_{4.5}\alpha-PtMo_{6}O_{24}].\;3H_{2}O$

  • Lee, Uk;Yukiyoshi Sasaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.1
    • /
    • pp.37-45
    • /
    • 1994
  • $(NH_4)_{4.5}[H_{3.5}{\alpha}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(A),\;(NH_4)_4[H_4{\beta}-PtMo_6O_{24}]{\cdot}1.5\;H_2O(B),\;and\;K_{3.5}[H_{4.5}{\alpha}-PtMo_6O_{24}]{\cdot}3\;H_2O(C)$ have been synthesized and their molecular structures have been also determined by single-crystal X-ray diffraction technique. The space groups, unit cell parameters, and R factors are as follows: Compound A, monoclinic, $A_{2/a}$, a= 19.074 (3), b=21.490 (3), c=15.183 (2) ${\AA};\;{\beta}$=109.67 (1) ${\AA}$; z=8; R=0.075($IF_0I>4{\sigma}(IF_0I);$ Compound B, triclinic, P$bar{1}$, a=10.776 (2), b=15.174 (4), c=10.697 (3) ${\AA};\;{\alpha}$ =126.29 (2), ${\beta}$=111.55 (2), ${\gamma}$=93.18 (2) ${\AA}$; Z=2; R=0.046($IF_0I>3{\sigma}(IF_0I);$): Compound C, triclinic, Pl, a=12.426 (2), b=13.884 (2), c=10.089 (1) ${\AA}$; ${\alpha}$=102.59 (2), ${\beta}$=110.73 (1), ${\gamma}$=53.93 (1) ${\AA}$; Z=2; R=0.074 ($IF_0I>3{\sigma}(IF_0I)$. Compounds A and C contain the well-known Anderson structure (planar structure) heteropoly oxometalate having approximate $bar{3}_m(D_{3d})$ symmetry, while compound B contains the bent structure heteropoly oxometalate having appproximate $2_{mm}(C2_v)$ symmetry. The bent structure and the planar one are geometrical isomers. These compounds are rot only novel heteroply molybdates containing platinate(IV) but also the first example of geometrical isomerism in the hexamolybdoheteropoly oxometalates. That isomerization surprisingly occurred because of the change of only 0.5 non-acidic hydrogen atom attached to the polyanion such as $[H_{3.5}{\alpha} -PtMo_6O_{24}]^{4.5-}{\to}[H_4{\beta}-PtMo_6O_{24}]^{4-}{\to}[H_{4.5}{\alpha} -PtMo_6O_{24}]^{3.5-}$. It seems that the gradual protonation of the polyanion plays an important role in that isomerism. These heteropolyanions form dimers by strong hydrogen bonds between two heteropolyanions in the respective crystal system.

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.

Evaluation of Fate of $NH_4{^+}$ of Condensed Molasses Solubles(CMS) in Soil Using by $^{15}N$-Tracer Method (중질소 추적자법을 이용한 Condensed Molasses Solubles(CMS) 함유 $NH_4{^+}$의 토양 중 행동 연구)

  • Lee, Sang-Mo;Choi, Woo-Jung;Yun, Seok-In;Choi, Young-Dae;Ro, Hee-Myong;Park, Jee-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.69-76
    • /
    • 2002
  • To study the behavior of $NH_4{^+}$ of CMS (condensed molasses solubles) in soil, a laboratory incubation experiment was conducted during a period of up to 21 days at $25^{\circ}C$. The $NH_4{^+}$ of CMS was labeled with $^{15}N$ and was applied to water-unsturated and water-saturated conditions. Soil pH was gradually decreased from 6.1 to 5.4 under unsaturated condition. However, soil pH was increased to 6.5 within 2 days under saturated condition and then was constant. The concentration of ammonium was decreased 3 times faster under unsaturated condition than under saturated condition. The concentration of nitrate was increased from 17.4 to $155.4mg\;kg^{-1}$ under unsaturated condition. But concentration of nitrate was kept with low(below $8.0mg\;kg^{-1}$) under saturated condition. During the incubation, 52.4% of $^{15}NH_4{^+}$ applied was existed in the form of $NO_3{^-}$ by nitrification under unsaturated condition. Most of applied nitrogen was immobilized within 4 days of incubation. On 21 days of the incubation the percentage of immobilized nitrogen derived from $^15NH_4{^+}$(NDFA) was 19.6% under unsaturated condition and 17.0% under saturated condition. The percentage of unaccounted N, which was lost by denitrification, was 28.4% under unsturated condition and 67.6% under saturated condition.

Curvature stroke modeling for the recognition of on-line cursive korean characters (온라인 흘림체 한글 인식을 위한 곡률획 모델링 기법)

  • 전병환;김무영;김창수;박강령;김재희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.140-149
    • /
    • 1996
  • Cursive characters are written on an economical principle to reduce the motion of a pen in the limit of distinction between characters. That is, the pen is not lifted up to move for writing a next stroke, the pen is not moved at all, or connected two strokes chance their shapes to a similar and simple shape which is easy to be written. For these reasons, strokes and korean alphabets are not only easy to be changed, but also difficult to be splitted. In this paper, we propose a curvature stroke modeling method for splitting and matching by using a structural primitive. A curvature stroke is defined as a substroke which does not change its curvanture. Input strokes handwritten in a cursive style are splitted into a sequence of curvature strokes by segmenting the points which change the direction of rotation, which occur a sudden change of direction, and which occur an excessive rotation Each reference of korean alphabets is handwritten in a printed style and is saved as a sequence of curvature strikes which is generated by splitting process. And merging process is used to generate various sequences of curvature strikes for matching. Here, it is also considered that imaginary strokes can be written or omitted. By using a curvature stroke as a unit of recognition, redundant splitting points in input characters are effectively reduced and exact matching is possible by generating a reference curvature stroke, which consists of the parts of adjacent two korean alphasbets, even when the connecting points between korean alphabets are not splitted. The results showed 83.6% as recognition rate of the first candidate and 0.99sec./character (CPU clock:66MHz) as processing time.

  • PDF