• Title/Summary/Keyword: p-$\Delta$ effect

Search Result 523, Processing Time 0.023 seconds

Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis (지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과)

  • Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.375-387
    • /
    • 2006
  • Different from the previous studies which investigated seismic P-$\Delta$ effect in slender columns though comparison of response spectra according to stability coefficients obtained from the analyses based on the assumed moment-curvature relationship, the axial force and P-$\Delta$ effect in RC columns are investigated on the basis of the layered section method which can effectively consider the changes of stiffness and yield strength due to the application of axial force in RC members. Practical ranges of slenderness and stability coefficient are assumed, and sixty sets of horizontal/vertical earthquake inputs are used in the analysis. From the parametric study, it is noted that the maximum deformation of the slender RC column is hardly affected by P-$\Delta$ effect or vortical earthquake but dominantly affected by the applied axial force. Therefore, it can be concluded that no additional consideration for the P-$\Delta$ effect and vortical earthquake is required in the seismic design of a slender RC column if the axial force effect is taken into account in the analysis and design procedures.

Beneficial Cardiovascular Effects Of Hydroalcoholic Extract From Crocus Sativus In Hypertension Induced By Angiotensin II

  • Plangar, Abdolali Faramarzi;Anaeigoudari, Akbar;KhajaviRad, Abolfazl;Shafei, Mohammad Naser
    • Journal of Pharmacopuncture
    • /
    • v.22 no.2
    • /
    • pp.95-101
    • /
    • 2019
  • Objectives: Angiotensin II (AngII), a major product of renin-angiotensin system (RAS) has important role in induction of hypertension and antihypertensive effect of several medicinal plant was mediated by effect on this agent. Therefore, this study examined the possible effect of hydroalcoholic extract of Crocus sativus (C. sativus) on hypertension induced by AngII. Methods: Six groups (n = 6) of rats were used as follow: 1) Control, 2) AngII (300 ng/kg), 3) Losartan (Los, 10 mg/kg) + AngII and 4-6) C. sativus extract (10, 20 & 40 mg/kg,) + AngII. The femoral artery and vein were cannulated for recording cardiovascular parameters and drugs administration, respectively. All drugs were injected intravenously (i.v). Los and all doses of C. sativus injected 10 min before AngII. Systolic blood pressure (SBP), mean arterial blood pressure (MAP) and heart rate (HR) were recorded throughout the experiment and those peak changes (${\Delta}$) were calculated and compared to control and AngII. Results: AngII significantly increased ${\Delta}MAP$, ${\Delta}SBP$ and ${\Delta}HR$ than control (P < 0. 01 to P < 0.001) and these increments were significantly attenuated by Los. All doses of C. sativus significantly reduced peak ${\Delta}MAP$, ${\Delta}SBP$, and ${\Delta}HR$ than AngII group (P < 0. 05 to P < 0.001). In addition, peak ${\Delta}MAP$, ${\Delta}SBP$ in doses 10 and 20 were significant than Los + AngII group (P<0.05 to P< 0.01) but in dose 40 only MAP was significant (P<0.05). Peak ${\Delta}HR$ in all doses of C sativus was not significant than Los+ AngII. Conclusion: Regarding the improving effect of the C. sativus extract on AngII induced hypertension, it seems that this ameliorating effect partly mediated through inhibition of RAS.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.4
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

The Experimental Studu on the P-Δ Influence of Weak Beam Unbraced Frames (보항복형 비가새 골조의 PΔ 영향에 관한 실험적 연구)

  • Kim, Hee Dong;Park, Sang Chul;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.363-372
    • /
    • 2001
  • The objective of this study is to evaluate the $P-{\Delta}$ effect in the case of weak beam unbraced frames by experimental approach. To evaluate $P-{\Delta}$ effect, four specimens were tested under monotonic loading condition. The parameters of tests are the stiffness of column and the axial load ratio. The results show that the value of axial load affects frame stability because $P-{\Delta}$ effects promote the yielding of beam. The maximum lateral load increases in proportion to the increment of column stiffness and rotational stiffness of supports, The collapse mechanism of weak beam unbraced frames is stably formed in the condition of low axial load ratio. The $B_2$ factor of limit state design code does not properly consider the $P-{\Delta}$ effect in inelastic region.

  • PDF

Stability of Steel Frames with Weak Column-Strong Beam Considering P-Δ effect (P-Δ 효과를 고려한 기둥항복형 강구조 골조의 안정성)

  • Kim, Hee Dong;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.457-466
    • /
    • 2003
  • This study aimed to evaluate the stability of steel frames with weak column-strong beam and consider P-effect using the experimental approach. Towards this end, three specimens were tested under monotonic loading condition. Parameters of tests includes the stiffness of the column and the axial load ratio. Result showed that reduction in column stiffness promoted P- effect, which considerably influenced the frame's stability.

A Study on the Lateral Behavior of Pile-Bent Structures with $P-{\Delta}$ Effect ($P-{\Delta}$ 효과를 고려한 Pile-Bent 구조물의 수평거동 연구)

  • Jeong, Sang-Seom;Kwak, Dong-Ok;Ahn, Sang-Yong;Lee, Joon-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.77-88
    • /
    • 2006
  • In this study, the lateral behavior of Pile-Bent structures subjected to lateral loading was evaluated by a load-transfer approach. An analytical method based on the Beam-Column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic and yielding) and $P-{\Delta}$ effect. Special attention was given to the lateral deflection of Pile-Bent structures depending on different soil properties, lateral load, slenderness ratio based on pier length and reinforcing effect of casing. From the results of the parametric study, it is shown that the increase of lateral displacement in a pile is much less favorable for an inelastic analysis than for an elastic analysis. It is found that for inelastic analysis, the maximum bending moment is located within a depth approximately 3.5D(D: pile diameter) below ground surface, but within 1.5D when $P-{\Delta}$ effect is considered. It is also found that the magnitude and distribution of the lateral deflections and bending moments on a pile are highly influenced by the inelastic analysis and $P-{\Delta}$ effect, let alone soil properties around an embedded pile.

Linear Relationships between Thermodynamic Parameters (Part I) Theoretical (熱力學 函數間의 直線關係 (第1報) 理論)

  • Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.211-215
    • /
    • 1963
  • Inter-relationship between the Hammett equation and the linear enthalpy-entropy effect has been discussed by deriving a new set of equations; ${\Delta}{\Delata}H^{\neq}=a{\sigma}+b{\Delta}{\Delta}S^{\neq}$ and ${\Delta}{\Delta}F^{\neq}=a{sigma}+(b-T){\Delta}{\Delta}S^{\neq}$ where a = -1.36p. Theoretical analysis show that the Hammett, Leffler and Brown equations are special limited forms of these general equations. A necessary and sufficient test of substituent effect can thus be provided by the plot of $({\Delta}{\Delta}H^{\neq}-a{\sigma)$ versus ${\Delta}{\Delta}S^{\neq}$.

  • PDF

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

Band gap control by tri-block nanoribbon structure of graphene and h-BN

  • Lee, Ji-U;Jeong, Ga-Un
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.324-329
    • /
    • 2015
  • First-principles investigations on the hybrid one dementional hexagonal hybrboron-nitride nano ribbons (BNNRs) with a armchair graphene nano-ribbons(AGRNRs), are presented. Electronics properties of the mixed armchair BNC nano-ribbon (BNCNRs) structure show control of a band gap on all cases at the special K-point. And we have studied, the band gap is direct in all cases. The band gap of mixed ABNCNRs could be divided into three groups (${\Delta}3p$, ${\Delta}3p+1$ and ${\Delta}3p+2$) and decrease with the increase of the width. Also these results show similar to the AGNRs case. Different from the band gap value ordering of AGNRs (${\Delta}3p+1$ > ${\Delta}3p$ > ${\Delta}3p+2$), the ordering of ABNCNRs is ${\Delta}3p$ > ${\Delta}3p+1$ > ${\Delta}3p+2$. The discrepancy may come from the differences between the edges of AGRNRs and the boundaries of hybrid BNCNRs. In addition, the bandgap of ABNCNRs are much smaller than those of the corresponding AGNRs. Our results show that the origin of band gap for BNCNRs with armchair shaped edges arises from both quantum confinement effect of the edges. These results similar to thecase of AGNRs. These properties of hybrid BN/C nano-ribbon structure may offer suitable bandgap to develop nnanoscale electronics and solar cell beyond individual GNRs and BNNRs.

  • PDF

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.