Seismic P-$\Delta$ Effects of Slender RC Columns in Earthquake Analysis

지진하중을 받는 철근콘크리트 장주의 P-$\Delta$ 효과

  • 곽효경 (한국과학기술원 건설 및 환경공학과) ;
  • 김진국 ((재)포항산업과학연구원 강구조연구소)
  • Published : 2006.12.30

Abstract

Different from the previous studies which investigated seismic P-$\Delta$ effect in slender columns though comparison of response spectra according to stability coefficients obtained from the analyses based on the assumed moment-curvature relationship, the axial force and P-$\Delta$ effect in RC columns are investigated on the basis of the layered section method which can effectively consider the changes of stiffness and yield strength due to the application of axial force in RC members. Practical ranges of slenderness and stability coefficient are assumed, and sixty sets of horizontal/vertical earthquake inputs are used in the analysis. From the parametric study, it is noted that the maximum deformation of the slender RC column is hardly affected by P-$\Delta$ effect or vortical earthquake but dominantly affected by the applied axial force. Therefore, it can be concluded that no additional consideration for the P-$\Delta$ effect and vortical earthquake is required in the seismic design of a slender RC column if the axial force effect is taken into account in the analysis and design procedures.

기존의 연구에서 가정된 모멘트-곡률 관계를 토대로 고정된 안정계수를 갖는 응답스펙트럼을 구성하여 동적 P-$\Delta$ 효과를 분석한 것과는 달리, 이 논문에서는 안정계수의 증가, 즉, 축력의 증가에 따른 하중-변위관계의 변화를 고려할 수 있도록하는 적층단면법을 토대로 실용범위의 세장비와 안정계수를 변화시켜가며, 해석을 수행하여 철근콘크리트 장주의 동적 P-$\Delta$ 효과를 분석하였다. 다양한 지진에 대한 보편화된 결과를 얻기 위해 각기 다른 60개의 입력지진을 사용하였다. 또한, 수평지진과 수직지진을 동시에 작용하여 해석을 수행해 수직지진에 따른 P-$\Delta$ 효과를 살펴보았다. 해석결과, 철근콘크리트 장주의 최대변형은 축력, P-$\Delta$ 효과 및 수직지진의 영향을 거의 받지 않는 반면, 부재 내력은 축력에 의한 강성과 항복강도의 증가에 의해 증가하기 때문에, 철근콘크리트 장주의 내진설계시 축력효과를 고려하여 설계할 경우 P-$\Delta$ 효과 또는 수직지진에 대한 추가적인 영향은 고려하지 않아도 될 것으로 판단된다.

Keywords

References

  1. 곽효경, 김선필(2001) 반복하중을 받는 RC기둥의 비선형 해석을 위한 모멘트-곡률 관계의 개발, 대한토목학회 논문집, 21(6-A), pp.957 -966
  2. 곽효경, 김진국, 김한수(2002) P-${\Delta}$ 효과를 고려한 RC 기둥의 극한저항력 산정, 한국전산구조공학회 논문집, 15(1), pp.105-116
  3. 곽효경, 김진국(2006) 적층단면법에 의한 철근콘크리트 보 해석에서의 부착슬립효과, 한국전산구조공학회 논문집, 19(1), pp.1-14
  4. 사단법인 한국지진공학회(1992) 내진설계규준연구(II) : 내진 설계 성능기준과 경제성 평가, 건설기술연구원
  5. 신현기 (2005) 철근콘크리트 구조물의 비선형 거동을 고려한 비탄성 설계스펙트럼의 결정, 석사학위논문, 건설및환경공학과, 한국과학기술원
  6. ACI Committee 318(2002) Building Code Requirements for Reinforced Concrete (ACI 318-02). American Concrete Institute. Detroit
  7. ASCE (2003) Minimum Design Loads for Buildings and Other Structures, ASCE7-02. Reston. Verginia
  8. ATC(1995) Seismic Evaluation and Retrofit of Concrete Buildings: Volumn 1, 2. ATC-40 Report, Applied Technology Council, Redwood City. California
  9. Belarbi. A., Hsu, T. T.C. (1994) Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete, ACI Structural Journal, 91(4). pp.465- 474
  10. Bernal, D.(1987) Amplification Factors for Inelastic Dynamic P-${\Delta}$ effects in Earthquake Analysis, Earthquake Engineering and Structural Dynamics. 15. pp.635-651 https://doi.org/10.1002/eqe.4290150508
  11. Bozcrgnia. Y., Bertero. V. V. (2004) Earthquake Engineering: from Engineering Seismology to Performace-Based Engineering, CRC Press, Florida
  12. Button. M.R., Cronin. C.J., Mayes. R.L. (2002) Effect of Vertical Motions on Seismic Response of Highway Bridges, Journal of Structural Engineering, 128(12), pp.1551-1564 https://doi.org/10.1061/(ASCE)0733-9445(2002)128:12(1551)
  13. Chopra, A.K. (1995) Dynamic of Structures, Prentice Hall
  14. Chopra. A.K., Goel, R.K. (1999) Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems, Pacific Earthquake Engineering Research Center, Rport No. PEER-1999/02, University of California, Berkeley, California
  15. Comite Euro-International du Beton(1990) CEB-FIP Model Code 1990 First Draft,' CEB, Bulletin d'Information 195. Paris
  16. Eligehausen. R., Popove, E.P., Bertero, V.V.(1983) Local Bond Stress-Slip Relationships of Deformed Bars under Generalized Excitations, Earthquake Engineering Research Center, Report No. UCB/EERC 83/23, University of California, Berkeley, California
  17. Federal Emergency Management Agency(1997), NEHRP guidelines for the seismic rehabilitation of buildings, FEMA 273
  18. Filippou, F.C., Popov. E.P., Bertero, V.V. (1983) Effects of Bond Deterioration on Hysteretic Behavior of Reinfroced Concrete Joints, Earthquake Engineering Research Center, Report UCB/EERC-83/19, University of California, Berkeley, California
  19. International Code Council (2003) 2003 International Building Code
  20. Ju, S.H., Liu. C.W., Wu. K.Z. (2000) 3D Analyses of Buildings under Vertical Component of Earthquakes, Journal of Structural Engineering, 126(10), pp.1196 -1202 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1196)
  21. Karson. I.D., Jirsa. J.O.(1969) Behavior of Concrete under Compressive Loading, Journal of the Structural Division. 95 (December)
  22. Kwak, H.G., Filippou, F.C.(1990) Finite Element Analysis of Reinforced Concrete Structures under Monotonic Loads, Report No. UCB/SEMM-90/14, Univ. of California. Berkeley, California
  23. MacRae. G.A. (1994) P-${\Delta}$ Effects on Single-Degree-of-Freedom Structures in Earthquakes, Earthquake Spectra, 10(3), pp.539-568 https://doi.org/10.1193/1.1585788
  24. Menegotto. M., Pinto. P.E. (1973) Method of Analysis for Cyclically Loaded Reinforced Concrete Plane Frame Including Changes in Geometry and Nonelastic Behavior of elements under Combined Normal Force and Bending, Proceedings, IABSE Symposium on Resistance and ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Lisbon
  25. Mo, Y. L. (1994) Dynamics Behavior of Concrete Structures, Developments in Civil Engineering, Elsevier Scientific Pub. Co., 44
  26. Pinto. P.E., Giuffre, A. (1970) Comportamento del Cemento Armato per Sollecitazioni Cicliche di Forte Intensita, Giornale del Genio Civile. 5
  27. Rehm, G. (1961) Uber die Grundlagen des Verbundes zwischen Stahl und Beton. Deutscher Ausschuss fur stahlbeton. 138
  28. Saadeghvaziri , M.A. (1997) Nonlinear Response and Modelling of RC Columns Subjected to Varying Axial Load, Engineering Structures, 19(6), pp.417 -424 https://doi.org/10.1016/S0141-0296(96)00086-7
  29. Saadeghvaziri , M.A. Foutch. D.A.(1991) Dynamic Behaivor of R/C Highway Brdiges under The Combined Effect of Vertical and Horizontal Earthquake Motions, Earthquake Engineering and Structural Dynamics, 20. pp.535-549 https://doi.org/10.1002/eqe.4290200604
  30. Scott. B.D., Park, R., Priestley, M.J.N.(1982) Stress-Strain Behavoir of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, ACI, 79(1), pp.13-27
  31. Shima. H., Chou. L., Okamura. H. (1987) Micro and Macro Model for Bond Behavior in RC, Journal of the Faculty of Engineering, The Unisversity of Tokyo (B), 39(2), pp.133-194
  32. Stevens, N.J., Uzumeri, S.M., Collins. M.P., Will, G.T. (1991) Constitutive Model for Reinforced Concrete Finite Element Analysis, ACI Strucutural Journal, 88(1), pp.49-59
  33. Tremblay, R.. Duval, C., Leger, P. (1997) Effects of Hysteretic Models and Ground Motion Characteristics on Seismic P-Delta Strength Amplification Factors, Stability and Ductility of Steel Structures, SDSS 97. pp.311 -318
  34. Williamson, E.B. (2003) Evaluation of Damage and P-${\Delta}$ Effects for Systems Under Earthquake Excitation, Journal of Structural Engineering, 129(8). pp.1036 -1046 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:8(1036)