• 제목/요약/키워드: ozone layer

Search Result 249, Processing Time 0.03 seconds

A Comparison of Dry Deposition Velocity of Ozone to Aerodynamic Resistance Parameterization (공기역학적 저항 모수화에 따른 오존의 건성침적속도 비교)

  • 이화운;문난경;노순아
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.663-667
    • /
    • 2002
  • The aerodynamic resistance($R_a$) to vertical transfer in the surface boundary layer can be formulated in terms of the friction velocity, height of observation, vertical heat flux and surface roughness. Unlike previous studies which focused on the role of $R_c$, present study perform additional tests using a variety of $R_a$ formulae. Several $R_a$ formulations available in the literature, suitable for unstable conditions, were tested for their influence on the dry deposition velocity. The canopy resistance($R_c$) determines the shape of the diurnal pattern, while a small amplitude diurnal cycle in $V_d$ was attributed to the aerodynamic resistance. The aerodynamic resistance is the major contributor to the formation of spikes in nighttime and $R_a$ is relatively important at night because the canopy resistance is smaller. All formulations show similar diurnal cycle and yield good agreement with the observations. Although present $V_d$ formulations are suitable for numerical air qualify models, the research must continue for further improvements in resistance parametrizations.

Development of the Assessment Framework for the Environmental Impacts in Construction

  • Tahoon Hong;Changwoon Ji;Kwangbok Jeong;Joowan Park
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.196-203
    • /
    • 2013
  • Environmental problems like global warming have now become important issues that should be considered in all industries, including construction. In South Korea, many studies have been conducted to achieve the government's goals of reduction in environmental impacts. However, the research on buildings has only focused on CO2 emission as a research target despite the fact that other environmental impacts resulting from ozone depletion and acidification should also be considered, in addition to global warming. In this regard, this study attempted to propose assessment criteria and methods to evaluate the environmental performance of the structures from various aspects. The environmental impact category can be divided into global impacts, regional impacts, and local impacts. First, global impacts include global warming, ozone layer depletion, and abiotic resource depletion, while regional impacts include acidification, eutrophication, and photochemical oxidation. In addition, noise and vibration occurring in the building construction phase are defined as local impacts. The evaluation methods on the eight environmental impacts will be proposed after analyzing existing studies, and the methods representing each environmental load as monetary value will be presented. The methods presented in this study will present benefits that can be obtained through green buildings with a clear quantitative assessment on structures. Ultimately, it is expected that if the effects of green buildings are clearly presented through the findings of this study, the greening of structures will be actively expanded.

  • PDF

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

Improvement in $AI_2O_3$ dielectric behavior by using ozone as an oxidant for the atomic layer deposition technique (ALD법으로 제조된 $AI_2O_3$막의 유전적 특성)

  • 김재범;권덕렬;오기영;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.183-188
    • /
    • 2002
  • In the present study AI$(CH_3)_3)$films were deposited by the ALD technique using trimethylaluminum(TMA) and ozone to improve the quality of the AI$(CH_3)_3)$ films, since the $OH^-$ radicals existing in the AI$(CH_3)_3)$ films deposited using TMA and $H_2O$ degrade the physical and the dielectric properties of the AI$(CH_3)_3)$ film. The XPS analysis results indicate that the $OH^-$ radical concentration in the AI$(CH_3)_3)$film deposited using $O_3$is lower than that using $H_2O$. The etch rate of the AI$(CH_3)_3)$film deposited using $O_3$is also lower than that using $H_2O$, suggesting that the chemical inertness of the former is better than the latter. The MIS capacitor fabricated with the TiN conductor and the $Al_2$O$_3$dielectrics formed using $O_3$offers lower leakage current, better insulating property and smaller flat band voltage shift $({\Delta}V_{FB})$.

Fabrication of Organic Field-Effect Transistors with Low Gate Leakage Current by a Functional Polydimethylsiloxane Layer (PDMS 기능성 박막을 이용한 적은 게이트 누설 전류 특성을 가지는 유기트랜지스터의 제작)

  • Kim, Sung-Jin
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.2
    • /
    • pp.147-150
    • /
    • 2009
  • We present a technique for fabricating low leakage organic field-effect transistors by a functional polydimethylsiloxane (PDMS) layer. The technique relies on the photo-chemical process of conversion of the PDMS to a silicon oxide which provides the selective growth of pentacene thin films. The reduced gate leakage current showed ${\sim}10^{-10}$ A in a linear ($V_d=-5\;V$) and saturation ($V_d=-30\;V$) region at $V_g-V_t>0$.

Investigations on aerosols transport over micro- and macro-scale settings of West Africa

  • Emetere, Moses Eterigho
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.75-86
    • /
    • 2017
  • The aerosol content dynamics in a virtual system were investigated. The outcome was extended to monitor the mean concentration diffusion of aerosols in a predefined macro and micro scale. The data set used were wind data set from the automatic weather station; satellite data set from Total Ozone Mapping Spectrometer aerosol index and multi-angle imaging spectroradiometer; ground data set from Aerosol robotic network. The maximum speed of the macro scale (West Africa) was less than 4.4 m/s. This low speed enables the pollutants to acquire maximum range of about 15 km. The heterogeneous nature of aerosols layer in the West African atmosphere creates strange transport pattern caused by multiple refractivity. It is believed that the multiple refractive concepts inhibit aerosol optical depth data retrieval. It was also discovered that the build-up of the purported strange transport pattern with time has enormous potential to influence higher degrees of climatic change in the long term. Even when the African Easterly Jet drives the aerosols layer at about 10 m/s, the interacting layers of aerosols are compelled to mitigate its speed to about 4.2 m/s (macro scale level) and boost its speed to 30 m/s on the micro scale level. Mean concentration diffusion of aerosols was higher in the micro scale than the macro scale level. The minimum aerosol content dynamics for non-decaying, logarithmic decay and exponential decay particulates dispersion is given as 4, 1.4 and 0 respectively.

Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

  • Sarker, Ashis K.;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1799-1805
    • /
    • 2014
  • In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layer-by-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at $100^{\circ}C$, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-$RGO_{30}$/PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-$RGO_{30}$/PET electrode was found to be $529F/cm^3$ at a current density of $3A/cm^3$, which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-$RGO_{30}$/PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode.

An Experimental Study on Performance Characteristics of Refrigeration System Using R134a Refrigerating System (R134a를 이용한 냉동장치의 성능특성에 관한 실험적 연구)

  • Kim, Jin-Hyun;Kim, Jong-Kil;Kim, Sung-Bae;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2188-2193
    • /
    • 2007
  • Since the use of CFCs and HCFCs refrigerants are to be restricted due to the depletion of ozone layer, this experiment applies the R134a gas to study the performance characteristic from the superheat control for improving the energy efficiency. The experiments are carried out for the condensing pressure of refrigeration system from 1.5 MPa to 1.6 MPa by 0.05 MPa and for superheat temperature from 0$^{\circ}C$ to 5$^{\circ}C$ by 1$^{\circ}C$ at each condensing pressure. As a result of experiment, when the superheat temperature is 1$^{\circ}C$ at each condensing pressure, the refrigeration system has the highest performance.

  • PDF

Numerical Simmulation of Carbon Dioxide Compressible Fluid Flow and Heat Transfer under Supercritical State in a Straight Duct with Square Cross Section (초임계 상태 이산화탄소의 정사각 직덕트 내 압축성 유동 크기 열전달의 전산해석)

  • Joo, Kwang-Sup;Choi, Young-Don;Chun, Kun-Ho;Kim, Dong-Chul;Bae, Doo-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.524-529
    • /
    • 2001
  • Because of the ozone layer depletion and global wanning, new alternative refrigerants are being developed. Among them, HFC refrigerants are thought promising, but some European countries are arguing that these refrigerants are also harmful to the global wanning. Therefore, natural refrigerants should be considered as an eventual alternative in refrigerators and heat pumps. In the present study, the supercritical gas cooling process are computationally analysed by employing various turbulence models of carbon dioxide in a trans critical refrigeration cycle. The gas cooling process near the critical point experiences a drastic change in thermodynamic and transport properties, thus the heat transfer characteristics would be different from those of two or single phases. Based on the computational results, the correlations to estimate the near-critical heat transfer characteristics will are obtained.

  • PDF

The Study on Performance Characteristics of NH3 Refrigeration System Using Optimum Heat Exchanger (고밀도 열교환기를 이용한 $NH_3$냉동장치의 성능 특성 연구)

  • Lee, Seung-Jae;Jeon, Sang-Sin;Kwon, Il-Wook;Lee, Jong-In;Ha, Ok-Nam
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1276-1281
    • /
    • 2004
  • Nowadays CFCs and HCFCs refrigerants are restricted because it cause depletion of ozone layer. Accordingly, this experiment apply the ammonia gas and not CFCs and HCFCs for refrigerant to study the performance characteristic from the superheat control and improve the energy efficiency from the high performance. The condensing pressure of refrigeration system is increased from 15.0bar to 16bar by 0.5bar and superheat temperature is increased from $0^{\circ}C$ to $10^{\circ}C$ by $1^{\circ}C$ at each condensing pressure. As the result of experiment, when the superheat temperature is $0^{\circ}C$ at each condensing pressure, the refrigeration system has the high performance.

  • PDF