• Title/Summary/Keyword: ozone free

Search Result 74, Processing Time 0.033 seconds

Process Optimization of PECVD SiO2 Thin Film Using SiH4/O2 Gas Mixture

  • Ha, Tae-Min;Son, Seung-Nam;Lee, Jun-Yong;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.434-435
    • /
    • 2012
  • Plasma enhanced chemical vapor deposition (PECVD) silicon dioxide thin films have many applications in semiconductor manufacturing such as inter-level dielectric and gate dielectric metal oxide semiconductor field effect transistors (MOSFETs). Fundamental chemical reaction for the formation of SiO2 includes SiH4 and O2, but mixture of SiH4 and N2O is preferable because of lower hydrogen concentration in the deposited film [1]. It is also known that binding energy of N-N is higher than that of N-O, so the particle generation by molecular reaction can be reduced by reducing reactive nitrogen during the deposition process. However, nitrous oxide (N2O) gives rise to nitric oxide (NO) on reaction with oxygen atoms, which in turn reacts with ozone. NO became a greenhouse gas which is naturally occurred regulating of stratospheric ozone. In fact, it takes global warming effect about 300 times higher than carbon dioxide (CO2). Industries regard that N2O is inevitable for their device fabrication; however, it is worthwhile to develop a marginable nitrous oxide free process for university lab classes considering educational and environmental purpose. In this paper, we developed environmental friendly and material cost efficient SiO2 deposition process by substituting N2O with O2 targeting university hands-on laboratory course. Experiment was performed by two level statistical design of experiment (DOE) with three process parameters including RF power, susceptor temperature, and oxygen gas flow. Responses of interests to optimize the process were deposition rate, film uniformity, surface roughness, and electrical dielectric property. We observed some power like particle formation on wafer in some experiment, and we postulate that the thermal and electrical energy to dissociate gas molecule was relatively lower than other runs. However, we were able to find a marginable process region with less than 3% uniformity requirement in our process optimization goal. Surface roughness measured by atomic force microscopy (AFM) presented some evidence of the agglomeration of silane related particles, and the result was still satisfactory for the purpose of this research. This newly developed SiO2 deposition process is currently under verification with repeated experimental run on 4 inches wafer, and it will be adopted to Semiconductor Material and Process course offered in the Department of Electronic Engineering at Myongji University from spring semester in 2012.

  • PDF

Comparison of Dye Removal Performance and Oxidants Formation of Insoluble Electrode (불용성 전극의 Dye 제거 성능과 산화제 생성 비교)

  • Yoo, Young-Eok;Kim, Dong-Seog
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1273-1284
    • /
    • 2011
  • The aim of this research was to evaluate the performance of insoluble electrode for the purpose of degradation of Rhodamine B (RhB) and oxidants generation [N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), $O_3$, $H_2O_2$, free Cl, $ClO_2$)]. Methods: Four kinds of electrodes were used for comparison: DSA (dimensional stable anode; Pt and JP202 electrode), Pb and boron doping diamond (BDD) electrode. The effect of applied current (0.5~2.5 A), electrolyte type (NaCl, KCl and $Na_2SO_4$) and electrolyte concentration (0.5~3.5 g/L) on the RNO degradation were evaluated. Experimental results showed that the order of RhB removal efficiency lie in: JP202 > Pb > BDD ${\fallingdotseq}$ > Pt. However, when concerned the electric power on maintaining current of 1 A during electrolysis reaction, the order of RhB removal efficiency was changed: JP202 > Pt ${\fallingdotseq}$ Pb > BDD. The total generated oxidants ($H_2O_2$, $O_3$, free Cl, $ClO_2$) concentration of 4 electrodes was Pt (6.04 mg/W) > JP202 (4.81 mg/W) > Pb (3.61 mg/W) > BDD (1.54 mg/W), respectively. JP202 electrode was the best electrode among 4 electrodes from the point of view of performance and energy consumption. Regardless of the type of electrode, RNO removal of NaCl and KCl (chlorine type electrolyte) were higher than that of the $Na_2SO_4$ (sulfuric type electrolyte) RNO removal. Except BDD electrode, RhB degradation and creation tendency of oxidants such as $H_2O_2$, $O_3$, free Cl and $ClO_2$, found that do not match. RNO degradation tendency were considered a simple way to decide the method which is simple it will be able to determinate the electrode where the organic matter decomposition performance is superior. As the added NaCl concentration was increases, the of hydrogen peroxide and ozone concentration increases, and this was thought to increase the quantity of OH radical.

Effects of different UV-8 levels on the growth, photosynthesis and pigments in cucumber(Cucumis sativus L.) (UV-B 강도 변화가 오이(Cucumis sativus L.)의 생장, 광합성 및 색소에 미치는 영향)

  • Kim, Hak-Yoon;Lee, In-Jung;Shin, Dong-Hyun;Kim, Kil-Ung
    • Journal of Life Science
    • /
    • v.8 no.3
    • /
    • pp.272-278
    • /
    • 1998
  • To investigate the effects of different UV-B levels on plant growth, cucumber plants were subjected to three levels of biologically effective ultraviolet-B(UV--$B^{BE}$ radiation [daily dose : 0.03(No UV-B), 6.40(Low UV-B) and 11.30 (High UV-B) kJ $m^{-2}$, UV--$B^{BE}$] in the growth chambers for 3 weeks during the early growth period. High and low levels of UV-B irradiation drastically decreased both dry weight and leaf area, but increased specific leaf weight of cucumber. Plants subjected to UV-B resulted in 30% and 20% reduction of photosynthesis rate by high and low UV-B, respectively. However, respiration rate was not affected by the UV-B. With increasing UV-B intensity, total chlorophyll contents were decreased linearly, while the contents of flavonoid were increased linearly. These results suggest that the present levels of UV-B may affect the growth of cucumber plant compared with a UV-B-free condition. It is likely that the growth of cucumber will be affected by enhanced UV-B due to ozone depletion in the near future.

  • PDF

Spatio-temporal Structure of Diurnal and Semidiurnal Tides in Geopotential Height Field (지위고도장의 일주기 및 반일주기 조석의 시공간적 구조)

  • Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.37 no.7
    • /
    • pp.465-475
    • /
    • 2016
  • The diurnal and semidiurnal tides in the global atmosphere are examined using 3-hourly geopotential height field of the state-of-the-art reanalysis data. Unlike the previous studies, the spatial structure and seasonality of those tides are analyzed from the surface of the earth to the stratosphere. It is found that, at most levels, diurnal tide is strong in the midlatitudes while semidiurnal tide is predominant in the tropics. The former shows strong seasonal cycle with a larger amplitude in summer than in winter in both hemispheres. This is different from the semidiurnal tide which has essentially no seasonal cycle. In term of the vertical structure, while semidiurnal tide has a barotropic structure, diurnal tide exhibits a distinct vertical structure with increased amplitude and height. Especially tropical diurnal tide exhibits a nearly opposite phase from the surface to the free troposphere, and to the upper stratosphere. Its amplitude also varies nonlinearly with height, possibly influenced by water vapor, ozone, gravity waves and solar radiation.

Surface Safety Characteristics of Polypropylene Surface Treatment by Variation of Rolling Speed and The Electric Power of Corona Discharge (코로나방전 표면 처리시 이동속도 및 공급전력 변화에 따른 폴리프로필렌 표면 안전성 특성)

  • Lee, Su Hwan;Lee, Dong Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.41-46
    • /
    • 2018
  • Experiments were carried out the phenomenal observation on effect of corona treated hotmelt laminating film in process of manufacture by 2 kinds of rolling speed and electric power variatons. Surface treatment by corona which is exposure of film surface to electron of ion bombardment, rather than mere exposure to active species, like atomic oxygen or ozone, can enhance adhesion by removing contaminant, electret, roughening surface, and introducing reactive chemical group. Reactive neutrals, ions, electron and photons generated during the corona treatment interact simultaneously with polymers to alter surface chemical composition, wettability, and thus film adhesion. However, it is highly recommended that extensive chains scission is avoided because it can lead to side-effect by forming sticky matter, resulting in dropouts. This paper reviews principles of surface preparation of polypropylene substrate by corona discharging. In addition, the experimental section provides a description of parameter optimization on corona discharging treatment and its side-effect. Experimental results are discussed in terms of surface wetting as determined by contact angle and SEM measurements. When the rolling speed of the film decreased from 1.666 [m / sec] to 0.083 [m / sec], contact angle decreased from $80[^{\circ}]$ to $64[^{\circ}]$, and the wettability was greatly improved. As the supply power increased from 0.4 [kVA] to 2 [kVA] at the corona discharge surface treatment, the contact angle decreased from $77[^{\circ}]$ to $65[^{\circ}]$, and the wettability was greatly improved.

Formation of Optical Fiber Preform Using Octamethylcyclotetrasiloxane (Octamethylcyclotetrasiloxane를 이용한 광섬유 클래드 프리폼 형성)

  • Choi, Jinseok;Lee, Tae Kyun;Park, Seong Gyu;Lee, Ga Hyoung;Jun, Gu Sik;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2018
  • There are various manufacturing processes for pure $SiO_2$ that is used as abrasives, chemicals, filters, and glasses, and in metallurgy and optical industries. In the optical fiber industry, to produce $SiO_2$ preform, $SiCl_4$ is utilized as a raw material. However, the combustion reaction of $SiCl_4$ has caused critical environmental issues, such as ozone deficiency by chlorine compounds, the greenhouse effect by carbon dioxide and corrosive gas such as hydrochloric acid. Thus, finding an alternative source that does not have those environmental issues is important for the future. Octamethylcyclotetrasiloxane (OMCTS or D4) as a chlorine free source is recently promising candidate for the $SiO_2$ preform formation. In this study, we first conducted a vaporizer design to vaporize the OMCTS. The vaporizer for the OMCTS vaporization was produced on the basis of the results of the vaporizer design. The size of the primary particle of the $SiO_2$ formed by OMCTS was less than 100 nm. X-ray diffraction patterns of the $SiO_2$ indicated an amorphous phase. Fourier-transform infrared spectroscopy analysis revealed the Si-O-Si bond without the -OH group.

Temporal changes of the activity of catalase, superoxide dismutase, and glutathione peroxidase in BALB/c mice skin after a single dose UVB irradiation (UVB 1회 조사 후 시간에 따른 BALB/c마우스의 피부 항산화효소 활성도 변화)

  • Lee, Joung-Hee;Park, Kyoung-Ae;Lee, Hee-Joo;Park, Myoung-Sook;Jeon, Sang-Eun;Park, Kyoung-Chan;Choi, S-Mi
    • Journal of Korean Biological Nursing Science
    • /
    • v.3 no.1
    • /
    • pp.53-61
    • /
    • 2001
  • Skin is constantly exposed to air, solar radiation, ozone and other air pollutants formulating free radicals. The reactive oxygen species(ROS), formed under these conditions, are associated with skin cancers, cutaneous photoaging, and cutaneous inflammatory disorders. In this study, we sought to establish an animal model for UVB-induced skin alteration using BALB/c mice. The level of UVB irradiation used in this model was within physiological dose. BALB/c mice were exposed to a single dose of UVB ($200mJ/cm^2$ and were sacrificed at 3, 6, 24, and 48 hours following the irradiation. The effect of a single exposure to UVB irradiation on skin catalase(CAT), superoxide dismutase(SOD), and glutathione peroxidase(GPx) activities were examined. Significant decrease in the activity of all enzymes were observed at 6 hours after irradiation(p<.05). The activity of CAT decreased more sharply than those of SOD and GPx, and then remained depressed until 48 hours after UVB irradiation, whereas the activity of GPx recovered to basal level at 48 h after UVB irradiation. Our results indicate that BALB/c mouse could be an adequate animal model of UVB irradiation experiment. These results will also provide fundamental knowledge for the effective nursing strategies in reducing UV-induced skin disorders.

  • PDF

Development Trends of Refrigerant and Refrigerant Oil for Automotive Air-conditioner (차량용 에어컨에 사용되는 냉매 및 냉동기유의 기술 동향)

  • Lee, Daewoong;Hwang, Seungyong
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.206-214
    • /
    • 2019
  • This study investigates alternative refrigerants and refrigerant oils as well as the tendency of protecting the global environment in view of automobile air-conditioning systems. Since decades, the R12 refrigerant is not used in automobile air-conditioners because of the ozone depletion potential (ODP) problem, and for the last 20 years, the ODP-free R134a refrigerant is leading the new automotive air-conditioning market. However, owing to its high global warming potential (GWP), the R134a refrigerant use in automobile air-conditioning system is also prohibited by law, and alternative refrigerants with a low GWP need to be proposed. Therefore, recently, the application of R1234yf, R152a, or other alternative refrigerants has started worldwide. By contrast, natural refrigerant R744 was introduced in the market several years ago by VDA (Verband Der Automobilindustrie), which is a German association in the automotive industry. This study also deals with refrigerant oils. For a long time, polyalkylene glycol (PAG) oil has been traditionally used with automobile air-conditioners, and polyolester (POE) oil is suitable for HEV, PHEV, and EV air-conditioning systems, where it is used by the electrically driven compressor owing to its excellent electrical insulation properties. Finally, PAG is an excellent lubricant for all the R134a, R152a, R1234yf, and R744 refrigerants, and has the advantage that it can be applied rapidly to alternative refrigerant air-conditioning systems.

Statistical Study and Prediction of Variability of Erythemal Ultraviolet Irradiance Solar Values in Valencia, Spain

  • Gurrea, Gonzalo;Blanca-Gimenez, Vicente;Perez, Vicente;Serrano, Maria-Antonia;Moreno, Juan-Carlos
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.599-610
    • /
    • 2018
  • The goal of this study was to statistically analyse the variability of global irradiance and ultraviolet erythemal (UVER) irradiance and their interrelationships with global and UVER irradiance, global clearness indices and ozone. A prediction of short-term UVER solar irradiance values was also obtained. Extreme values of UVER irradiance were included in the data set, as well as a time series of ultraviolet irradiance variability (UIV). The study period was from 2005 to 2014 and approximately 250,000 readings were taken at 5-min intervals. The effect of the clearness indices on global irradiance variability (GIV) and UIV was also recorded and bi-dimensional distributions were used to gather information on the two measured variables. With regard to daily GIV and UIV, it is also shown that for global clearness index ($k_t$) values lower than 0.6 both global and UVER irradiance had greater variability and that UIVon cloud-free days ($k_t$ higher than 0.65) exceeds GIV. To study the dependence between UIVand GIV the ${\chi}^2$ statistical method was used. It can be concluded that there is a 95% probability of a clear dependency between the variabilities. A connection between high $k_t$ (corresponding to cloudless days) and low variabilities was found in the analysis of bidimensional distributions. Extreme values of UVER irradiance were also analyzed and it was possible to calculate the probable future values of UVER irradiance by extrapolating the values of the adjustment curve obtained from the Gumbel distribution.

Spatial-temporal Assessment and Mapping of the Air Quality and Noise Pollution in a Sub-area Local Environment inside the Center of a Latin American Megacity: Universidad Nacional de Colombia - Bogotá Campus

  • Fredy Alejandro, Guevara Luna;Marco Andres, Guevara Luna;Nestor Yezid, Rojas Roa
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.232-243
    • /
    • 2018
  • The construction, development and maintenance of an economically, environmentally and socially sustainable campus involves the integration of measuring tools and technical information that invites and encourages the community to know the actual state to generate positive actions for reducing the negative impacts over the local environment. At the Universidad Nacional de Colombia - Campus $Bogot{\acute{a}}$, a public area with daily traffic of more than 25000 people, the Environmental Management Bureau has committed with the monitoring of the noise pollution and air quality, as support to the campaigns aiming to reduce the pollutant emissions associated to the student's activities and campus operation. The target of this study is based in the implementation of mobile air quality and sonometry monitoring equipment, the mapping of the actual air quality and noise pollution inside the university campus as a novel methodology for a sub-area inside a megacity. This results and mapping are proposed as planning tool for the institution administrative sections. A mobile Kunak$^{(R)}$ Air & OPC air monitoring station with the capability to measure particulate matter $PM_{10}$, $PM_{2.5}$, Ozone ($O_3$), Sulfur Oxide ($SO_2$), Carbon Monoxide (CO) and Nitrogen Oxide ($NO_2$) as well as Temperature, Relative Humidity and Latitude and Longitude coordinates for the data georeferenciation; and a sonometer Cirrus$^{(R)}$ 162B Class 2 were used to perform the measurements. The measurements took place in conditions of academic activity and without it, with the aim of identify the impacts generated by the campus operation. Using the free code geographical information software QGIS$^{(R)}$ 2.18, the maps of each variable measured were developed, and the impacts generated by the operation of the campus were identified qualitative and quantitively. For the measured variables, an increase of around 21% for the $L_{Aeq}$ noise level and around 80% to 90% for air pollution were detected during the operation period.