DOI QR코드

DOI QR Code

Formation of Optical Fiber Preform Using Octamethylcyclotetrasiloxane

Octamethylcyclotetrasiloxane를 이용한 광섬유 클래드 프리폼 형성

  • Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Tae Kyun (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Park, Seong Gyu (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Lee, Ga Hyoung (R&D Center of STI Co., Ltd.) ;
  • Jun, Gu Sik (R&D Center of STI Co., Ltd.) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 이태균 (금오공과대학교 신소재공학과) ;
  • 박성규 (금오공과대학교 신소재공학과) ;
  • 이가형 (에스티아이 기술연구소) ;
  • 전구식 (에스티아이 기술연구소) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2017.10.13
  • Accepted : 2017.11.10
  • Published : 2018.01.27

Abstract

There are various manufacturing processes for pure $SiO_2$ that is used as abrasives, chemicals, filters, and glasses, and in metallurgy and optical industries. In the optical fiber industry, to produce $SiO_2$ preform, $SiCl_4$ is utilized as a raw material. However, the combustion reaction of $SiCl_4$ has caused critical environmental issues, such as ozone deficiency by chlorine compounds, the greenhouse effect by carbon dioxide and corrosive gas such as hydrochloric acid. Thus, finding an alternative source that does not have those environmental issues is important for the future. Octamethylcyclotetrasiloxane (OMCTS or D4) as a chlorine free source is recently promising candidate for the $SiO_2$ preform formation. In this study, we first conducted a vaporizer design to vaporize the OMCTS. The vaporizer for the OMCTS vaporization was produced on the basis of the results of the vaporizer design. The size of the primary particle of the $SiO_2$ formed by OMCTS was less than 100 nm. X-ray diffraction patterns of the $SiO_2$ indicated an amorphous phase. Fourier-transform infrared spectroscopy analysis revealed the Si-O-Si bond without the -OH group.

Keywords

References

  1. J. P. Bange, L. S. Patil and D. K. Gautam, Prog. Electromagn. Res. M, 3, 165 (2008). https://doi.org/10.2528/PIERM08060401
  2. E. Takao, K. Masao, S. Shoichi and T. Satoru, Jpn. J. Appl. Phys., 19, 2047 (1980). https://doi.org/10.1143/JJAP.19.2047
  3. M. Kawachi, Opt. Quant. Electron., 22, 391 (1990). https://doi.org/10.1007/BF02113964
  4. J. M. Ruano, V. Benoit, J. S. Aitchison and J. M. Cooper, Anal. Chem., 72, 1093 (2000). https://doi.org/10.1021/ac9906983
  5. D. Hawtof, J. Stone III and J. Rosettie, In proceedings of ASME 2006 International Manufacturing Science and Engineering Conference Manufacturing Science and Engineering (Ypsilanti, Michigan, USA, 2006) p.171
  6. J. P. Bange, L. S. Patil and D. K. Gautam, Optoelectron. Adv. Mat., 4, 584 (2010).
  7. H. Briesen, A. Fuhrmann and S. E. Pratsinis, Chem. Eng. Sci., 53, 4105 (1998).
  8. P. Tandon and H. Boek, J. Non-Cryst. Solids, 317, 275(2003). https://doi.org/10.1016/S0022-3093(02)01817-3
  9. V. Petit, A. L. Rouge, F. Beclin, H. E. Hamzaoui and L. Bigot, Aerosol Sci. Technol., 44, 388 (2010). https://doi.org/10.1080/02786821003671315
  10. Z. Le-Tian, X. Wen-Fa, W. Yuan-Da, X. Hua, L. Ai-Wu, Z. Wei and Z. Yu-Shu, Chin. Phys. Lett., 20, 1366(2003).
  11. J. R. Martinez, S. Palomares, G. Ortega-Zarzosa, F. Ruiz and Y. Chumakov, Mater. Lett., 60, 3526 (2006). https://doi.org/10.1016/j.matlet.2006.03.044
  12. A. Alessi, S. Agnello, G. Buscarino and F. M. Gelardi, J. Non-Cryst. Solids, 362, 20 (2013). https://doi.org/10.1016/j.jnoncrysol.2012.11.006
  13. B. Shokri, M. A. Firouzjah and S. I. Hosseini, In proceedings of International Plasma Chemistry Society, Bochum, Germany (2009).
  14. N. Tomozeiu, Silicon Oxide (SiOx, 0 < x < 2): A Challenging Material for Optoelectronics, Optoelectronics - Materials and Techniques, p.55-98, ed. P. Pradeep, InTech, (2011).