• Title/Summary/Keyword: ozonation by-products

Search Result 24, Processing Time 0.026 seconds

A Study on the Variation of HAA Precursors by Ozonation of Phenol (페놀의 오존 산화시 관찰된 HAA 전구물질 변화에 관한 연구)

  • Oh, Byung Soo;Kim, Kyoung Suk;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.153-157
    • /
    • 2005
  • The purpose of this study was to find out the effect of oxidation by-products for the formation of haloacetic acid (HAA) during ozonation. The phenol was used as a model precursor of HAA, and its oxidation by-products, such as hydroquinone, catechol, glyoxal, glyoxylic acid and oxalic acid were investigated to find out how much HAA formation potential (HAAFP) they have. As the result, among the phenol and its oxidation by-products, the highest reactivity with chlorine was found from the phenol, showing the highest HAAFP. Even though the tested by-products had a lower HAAFP than phenol, it was confirmed that all of them can act as the precursor of HAA. From the ozonation of phenol-containing water, it was found that the efficiency of ozone in controlling of HAAs can be reduced due to the oxidation by-products. In addition, the ozonation of HAAFP was performed under the both pH conditions (acid and base), and the result indicates that OH radical play a important role to decrease HAAFP.

Destruction of 2-Chloriphenol from Wastewater and Investigation of By-products by Ozonation

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.850-856
    • /
    • 2001
  • This study investigates the ozonation kinetics of 2-chlorophenol in wastewater under acidic condition. Intermediates and by-products generated during the process were rigorously identified and quantified. The major by-products are four carboxylic acids: tartaric acid, oxalic acid, maleic acid, and hydroxymalonic acid. The generation of these organic acids is in agreement with theoretical predictions. But hydroxylated compounds are more favorable to produce than their corresponding non-hydroxylated ones. Based on the information concerning the generation of organic acids and other aromatic intermediates, the complete reaction pathways toward mineralization can be proposed and mathematically modeled. The fitted second-order rate constants are in the same order of magnitude with the results from other studies. Using these oxidation pathways and the corresponding kinetic model, by-products generated in ozonation process can be predicted. This can help in optimizing the design and operation of any subsequent treatment processes.

Investigation on the products generated by the ozonation of Microcystis sp. (Microcystis sp.의 오존접촉특성 및 부산물 생성에 관한 연구)

  • Kim, Young-Ung;Son, Hee-Jong;Yu, Myung-Ho;Lee, Chun-Sik;Kim, Seong-Yun
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.479-490
    • /
    • 2000
  • This study investigated the removal characteristics, Microcystin decomposition and generation of by-products when aqueous Microcystis sp. is oxidized by ozone. The concentration of Microcystin (MC) in aqueous solution has been found by HPLC analysis to decrease continuously by ozonation after the initial, abrupt increase. The kinetic constant of the decomposition of MC-RR and -LR were 0.0596 and 0.0243, respectively. This means that removal efficiency of MC-RR by its oxidative decomposition is preferable compared with that of MC-LR. On the other hand, it has been found that the decomposition product, TOC, exhibits the continuous decrease in the concentration by further ozonation, while DOC and UV-254 increase temporarily until 10 minutes before the decrease. Furthermore, the GC/MSD analysis has revealed that the ozonation of Microcystis sp. for 100minutes affords five kinds of aldehydes, six kinds of alcohols, and trans-1, 2-dimethyl-cyclopropane.

  • PDF

Pre-Coagulation and Pre-Ozonation for Ozone Resisting Microfiltration Membrane Filtration System of a High Humic Contained Surface Water (고농도 휴믹성분이 포함된 강 원수에서 응집-침전 및 오존 공정을 전처리로 적용한 오존 내성막 pilot plant에서의 운전성 및 투과수 수질변화에 관한 연구)

  • Lee, Sanghyup;Yoshimasa, Watanabe;Lee, Seockheun;Ahn, Kyuhong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.598-607
    • /
    • 2004
  • In this study, the effects of two pre-treatment processes were observed prior to membrane filtration: pre-coagulation and pre-ozonation. To compare the effect of two above-mentioned pre-treatments, we adopted the four schemes: first one is direct membrane filtration of river surface water, second one is membrane filtration after pre-coagulation, third one is membrane filtration after pre-ozonation and fourth one is membrane filtration after pre-coagulation and pre-ozonation. There are two exceptional characteristics in applied processes. One is the usage of the MF membrane which has high ozone resisting characteristic. Therefore, ozone resides in membrane module during filtration. The other is adoption of Jet Mixed Separator (JMS) as coagulation-sedimentation process. The change in transmembrane pressure and permeate water quality were also examined. As a result, considering the filtration performance efficiency and permeate water quality, the process composed of filtration with combination of both pre-coagulation and pre-ozonation was proved most effective. The improved efficiency was due to the reduction of loading rate of fouling inducing materials to membrane module by coagulation process as well as variable reactions, such as degradation, particle destabilization and coagulation, occurred by residual ozone in membrane module. The additional effect of pre-coagulation before pre-ozonation is suppression of AOC, one of the by-products induced by ozonation. Therefore, combination of pre-coagulation and pre-ozonation is the effective process to overcome the major de-merit of ozonation i.e. by-products formation.

A Study on removal of Geosmin by Ozonation and Photocatalysis and Generation of by-products (오존과 광촉매를 이용한 Geosmin 제거 및 부산물 생성에 관한 연구)

  • Kim, Young-Ung;Son, Hee-Jong;Yu, Myung-Ho;Kim, Seong-Yun;Kim, Chul
    • Journal of Korean Society on Water Environment
    • /
    • v.16 no.4
    • /
    • pp.445-457
    • /
    • 2000
  • This study was carried out comparing with ozone oxidation and photocatalytic degradation for removal of geosmin. In the change of pH, Ozonation, UV-Germicidal lamp and Halogen lamp irradiation and Halogen $lamp/TiO_2$ Powder was very slowly changing, but UV-Germicidal $lamp/TiO_2$ Powder was rapidly changed from 7.0 to 7.7 until 300min of irradiation time, and varied a little after. Geosmin degradation ratio was as following, UV-Germicidal $lamp/TiO_2$ $Powder(200mg/L){\geq}O_3$ > UV-Germicidal $lamp/TiO_2$ $Pw(100mg/L)$ > UV-Germicidal lamp > Halogen lamp. The result of investigation of generated by-products were 3-Heptanone, two sort of aldehydes and three sort of alcohols by ozonation. But It was not generated by photocatalytic degradation.

  • PDF

Pre-ozonation for removal of algal organic matters (AOMs) and their disinfection by-products (DBPs) formation potential

  • Jing Wang;Se-Hyun Oh;Yunchul Cho
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • As a result of algal bloom, algal organic matters (AOMs) are rapidly increased in surface water. AOMs can act as precursors for the formation of harmful disinfection by-products (DBPs), which are serious problems in water treatment and human health. The main aim of this study is to characterize the formation of DBPs from AOMs produced by three different algae such as Oscillatoria sp., Anabaena sp., and Microcystis aeruginosa under different algal growth phases. In an effort to examine formation of DBPs during chlorination, chloroform (TCM), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were determined under various CT (product of disinfectant concentration and contact time, mg·min/L) values. Generally, the amounts of DBPs tended to increase with increasing CT values at the most growth phases. However, there was a significant difference between the amounts of DBPs produced by the three algal species at different growth phases. This result is likely due to the chemical composition variability of AOM from different algae at different growth phases. In addition, the effect of pre-ozonation on coagulation for the removal of AOMs from three algal species was investigated. The pre-ozonation had a positive effect on the coagulation/flocculation of AOMs.

Degradation of Humic Acid in Ozone/GAC Process (오존/GAC 공정에서의 부식산 분해 특성)

  • Rhee, Dong Seok
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.47-52
    • /
    • 2008
  • In this study, GAC adsorption, ozonation and $O_3/GAC$ hybrid processes were investigated for treatment of humic acid. The degradation characteristics and efficiencies of humic acid in each process were evaluated through pH variation, $UV_{254}$ decrease, DOC removal, change of molecular size distribution and by-products formation. DOC removal rate in $O_3/GAC$ hybrid process (80%) was higher than arithmetic sum of ozonation (38%) and GAC adsorption process (19%) by synergism. $UV_{254}$ decrease rate of humic acid was also the highest than any other processes when treated in $O_3/GAC$ hybrid process. Molecular size distribution was not significantly changed in the GAC adsorption process. Main distribution of molecular size of humic acid was converted from 3 k~30 kDa into 0.5 k~3 kDa in ozonation. But the most of large molecular sizes of humic acid converted into small molecules(smaller than 0.5 kDa) in $O_3/GAC$ hybrid process. Quantities of formaldehyde and glyoxal formed in $O_3/GAC$ hybrid process were less than the ones in ozonation.

  • PDF

The Effect of Temperature and pH on Bromate Formation by Ozonation (오존처리시 Bromate생성에 미치는 온도 및 pH의 영향)

  • Lee, Mu Gang;Kim, Yeong Cheol;Choe, Jong Won
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.667-674
    • /
    • 2004
  • The objective of this study was to investigate the effects of pH and temperature on the formation of bromate, which is ozonation by-products, during ozonation. In this experiment, the operating parameters including pH 3 ~ 10 and temperature 15 ~ $30^{\circ}C$ were studied. Through the study for the bromate formation, reaction rate constant, and ozonation effect index on pH and temperature, the results obtained are as follows. At the same initial pH condition, the increase of pH shown similar trends even if the reaction variables such as temperature and reaction time of ozonation were exchanged. As pH and temperature were increasing, the bromate concentration was increased but bromine(HOBr+OBr) was decreased with increasing pH from 3 to 10. The activation energy(J/mol) for bromate formation decreased with increasing pH. The rate constants of bromate formation for the reaction of ozone and bromide, and ozone dosage coefficient$(K_{0})$ increased with temperature and pH. Ozonation effect index(OI) decreased with increasing temperature and pH.

A Study of Ozonation Characteristics of Bis(2-chloroethyl) Ether (Bis(2-chloroethyl) Ether (BCEE)의 오존산화 특성에 관한 연구)

  • Lee, Cheal-Gyu;Kim, Moon-Chan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.6
    • /
    • pp.610-615
    • /
    • 2010
  • In this study ozonation of bis(2-chloroethyl) ether (BCEE) in aqueous solution was performed in a laboratory scale batch reacter. The ozonation process of BCEE was carried out by bubbling ozone at the bottom of reactor containing the BCEE solution. Ozonation was almost complete after 80 min with an ozone concentration of $50{\pm}10mg/L$. Ozonation treatment efficiencies of BCEE were evaluated in terms of $BOD_5$, $COD_{Cr}$, and TOC. In the ozonation of BCEE a 62.79% decrease of the $COD_{Cr}$ and a 57.25% decrease of the TOC lead to biodegradable by-products ($BOD_5/COD_{Cr}$ = 0.39). The results of this research show that wastewaters containing non-biodegradable compounds, such as BCEE can be successfully treated by ozonation followed by bio-treatment. The pseudo first-order rate constants of the ozonation was $2.00{\times}10^{-4}sec^{-1}$ and the activation energy was $10.02kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon (오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구)

  • 배현주;김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.3
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF