A Study of Ozonation Characteristics of Bis(2-chloroethyl) Ether

Bis(2-chloroethyl) Ether (BCEE)의 오존산화 특성에 관한 연구

  • Lee, Cheal-Gyu (Department of Environmental Engineering, Chongju University) ;
  • Kim, Moon-Chan (Department of Environmental Engineering, Chongju University)
  • 이철규 (청주대학교 이공대학 환경공학부) ;
  • 김문찬 (청주대학교 이공대학 환경공학부)
  • Received : 2010.06.16
  • Accepted : 2010.08.24
  • Published : 2010.12.10

Abstract

In this study ozonation of bis(2-chloroethyl) ether (BCEE) in aqueous solution was performed in a laboratory scale batch reacter. The ozonation process of BCEE was carried out by bubbling ozone at the bottom of reactor containing the BCEE solution. Ozonation was almost complete after 80 min with an ozone concentration of $50{\pm}10mg/L$. Ozonation treatment efficiencies of BCEE were evaluated in terms of $BOD_5$, $COD_{Cr}$, and TOC. In the ozonation of BCEE a 62.79% decrease of the $COD_{Cr}$ and a 57.25% decrease of the TOC lead to biodegradable by-products ($BOD_5/COD_{Cr}$ = 0.39). The results of this research show that wastewaters containing non-biodegradable compounds, such as BCEE can be successfully treated by ozonation followed by bio-treatment. The pseudo first-order rate constants of the ozonation was $2.00{\times}10^{-4}sec^{-1}$ and the activation energy was $10.02kcal{\cdot}mol^{-1}$ at $30^{\circ}C$.

본 논문에서는 실험실적 규모의 반응기에서 수용액상 bis(2-chloroethyl) ether (BCEE)의 오존산화반응에 대한 연구를 수행하였다. 오존산화반응은 BCEE 용액이 포함되어 있는 반응기 바닥에 오존 기체를 주입하여 진행하였으며 $50{\pm}10mg/L$의 오존 농도로 80 min 반응시켜 완결하였다. BCEE의 오존산화처리 효율을 $BOD_5$, $COD_{Cr}$, 그리고 TOC의 변화로 측정하였다. BCEE의 오존산화반응결과 $COD_{Cr}$가 62.79%, TOC의 57.25% 감소된 것은 생분해 가능한 중간체가 생성되었음을 알 수 있다($BOD_5/COD_{Cr}$ = 0.39). 본 연구의 결과는 BCEE와 같은 비생분해성 물질을 포함하는 폐수가 오존산화처리 후에 생물학적 처리를 함으로써 성공적으로 처리될 수 있다는 것을 보여주었다. $30^{\circ}C$에서 유사 1차 반응속도 상수는 $2.00{\times}10^{-4}sec^{-1}$, 활성화 에너지는 $10.02kcal{\cdot}mol^{-1}$로 나타났다.

Keywords

References

  1. ATSDR (Agency for Toxic Substances and Disease Registry), Toxicological profile for Bis (2-chloroethyl) ether, (2009). Available from: http://www.atsdr.cdc.gov/toxprofiles/tp127.html.
  2. R. V. Thomann, Environ. Health Persp., 103, 53 (1995). https://doi.org/10.1289/ehp.95103s453
  3. A. J. Bender, R. A. Kirgan, R. A. Karn, B. Danovan, M. F. Mohn, and D. M. Sirkis, J. Hazard. Mat., 168, 1041 (2009). https://doi.org/10.1016/j.jhazmat.2009.02.138
  4. M. Kaludjerski and M. D. Gurol, Water Res., 38, 1595 (2004). https://doi.org/10.1016/j.watres.2003.11.037
  5. USEPA (U.S. Environmental Protection Agency), Integrated Risk Information System (IRIS) on Bis(2-Chloroethyl)Ether. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. (1999). Available from: http://www.epa. gov/iris/subst/0137.htm
  6. F. Y. C. Huang, K. Y. Li, and C. C. Liu, Environ. Prog., 18, 55 (1999). https://doi.org/10.1002/ep.670180121
  7. A. Christensen, M. D. Gurol, and T. Garoma, Water Res., 43, 3910 (2009). https://doi.org/10.1016/j.watres.2009.04.009
  8. M. D. M. Mutuc, N. G. Love, and P. J. Vikesland, Chemosphere, 70, 1390 (2008). https://doi.org/10.1016/j.chemosphere.2007.09.061
  9. T. Garoma and M. D. Gurol, Environ. Sci. Technol., 38, 5246 (2004). https://doi.org/10.1021/es0353210
  10. J. L. Acero, S. B. Haderlein, T. C. Schmidt, M. J. F. Suter, and U. von Gunten, Environ. Sci. Technol., 35, 4252 (2001). https://doi.org/10.1021/es010044n
  11. K. Y. Li, C. C. Liu, Q. Ni, Z. F. Liu, F. Y. C. Huang, and J. A. Colapret, Ind. Eng. Chem. Res., 34, 1960 (1995). https://doi.org/10.1021/ie00045a005
  12. Z. Shiyun, Z. Xuesong, and L. Daotang, Water Res., 37, 1185 (2003). https://doi.org/10.1016/S0043-1354(02)00178-1
  13. N. C. Shang, Y. H. Yu, H. W. Ma, C. H. Chang, and M. L. Liou, J. Environ. Manag., 78, 216 (2006). https://doi.org/10.1016/j.jenvman.2005.03.015