• Title/Summary/Keyword: oxygen reduction reaction

Search Result 347, Processing Time 0.03 seconds

Vascular Cell Responses against Oxidative Stress and its Application

  • Ryoo, Sung-Woo;Lee, Sang-Ki;Kim, Cuk-Seong;Jeon, Byeong-Hwa
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-9
    • /
    • 2004
  • The history of studies in biology regarding reactive oxygen species (ROS) is approximately 40 years. During the initial 30 years, it appeared that these studies were mainly focused on the toxicity of ROS. However, recent studies have identified another action regarding oxidative signaling, other than toxicity of ROS. Basically, it is suggested that ROS are reactive, and degenerate to biomolecules such as DNA and proteins, leading to deterioration of cellular functions as an oxidative stress. On the other hand, recent studies have shown that ROS act as oxidative signaling in cells, resulting in various gene expressions. Recently ROS emerged as critical signaling molecules in cardiovascular research. Several studies over the past decade have shown that physiological effects of vasoactive factors are mediated by these reactive species and, conversely, that altered redox mechanisms are implicated in the occurrence of metabolic and cardiovascular diseases ROS is a collective term often used by scientist to include not only the oxygen radicals($O2^{-{\cdot}},\;{^{\cdot}}OH$), but also some non-radical derivatives of oxygen. These include hydrogen peroxide, hypochlorous acid (HOCl) and ozone (O3). The superoxide anion ($O2^{-{\cdot}}$) is formed by the univalent reduction of triplet-state molecular oxygen ($^3O_2$). Superoxide dismutase (SOD)s convert superoxide enzymically into hydrogen peroxide. In biological tissues superoxide can also be converted nonenzymically into the nonradical species hydrogen peroxide and singlet oxygen ($^1O_2$). In the presence of reduced transition metals (e.g., ferrous or cuprous ions), hydrogen peroxide can be converted into the highly reactive hydroxyl radical (${^{\cdot}}OH$). Alternatively, hydrogen peroxide may be converted into water by the enzymes catalase or glutathione peroxidase. In the glutathione peroxidase reaction glutathione is oxidized to glutathione disulfide, which can be converted back to glutathione by glutathione reductase in an NADPH-consuming process.

  • PDF

Magnetism during adsorption of oxygen in Pt segregated $Pt_3Ni$ (111): Density Functional Study

  • Kumar, Sharma Bharat;Kwon, O-Ryong;Odkhuu, Dorj;Hong, Soon-Cheol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2011.12a
    • /
    • pp.14-14
    • /
    • 2011
  • Limited understanding of the surface properties of $Pt_3Ni$ for the oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cell (PEMFC) has motivated the study of magnetic properties and electronic structures of Pt segregated $Pt_3Ni$ (111) surface during adsorption of oxygen molecule on it. The first principle method based on density functional theory (DFT) is carried out. Nonmagnetic Pt has induced magnetic moment due to strong hybridization between Ni 3d and Pt 5d. It is found that an oxygen molecule prefers bridge site with Pt rich subsurface environment for adsorption on the surface of Pt segregated $Pt_3Ni$ (111). It is seen that there is very small charge transfer from $O_2$ to Pt. The curve of energy versus magnetic moment of the oxygen explains the magnetic moments in transition states. We found the dissociation barrier of 1.07eV significantly higher than dissociation barrier 0.77eV on Pt (111) suggesting that the dissociation is more difficult on Pt segregated $Pt_3Ni$ (111) surface. The spin polarized densities of states are presented in order to understand electronic structures of Pt and $O_2$ during the adsorption in detail.

  • PDF

The Effect of LSC/GDC (50 : 50 vol%) Active Layers on Oxygen Transport Properties of LSCF/GDC (20 : 80 vol%) Dual-phase Membrane (LSC/GDC (50 : 50 vol%) 활성층이 LSCF/GDC (20 : 80 vol%) 복합 분리막의 산소투과 거동에 미치는 영향)

  • Cha, Da-Som;Yoo, Chung-Yul;Joo, Jong Hoon;Yu, Ji Haeng;Han, Moon-Hee;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.367-374
    • /
    • 2014
  • In the present study, disc-type LSCF/GDC (20 : 80 vol%) dual-phase membranes having porous LSC/GDC (50 : 50 vol%) active layers were prepared and effect of active layers on oxygen ion transport behavior was investigated. Introduction of active layers improved drastically oxygen flux due to enhanced electron conductivity and oxygen surface exchange activity. As firing temperature of active layer increased from $900^{\circ}C$ to $1000^{\circ}C$, oxygen flux increased due to improved contact between membrane and active layer or between grains of active layer. The enhanced contact would improve oxygen ion and electron transports from active layer to membrane. Also, as thickness of active layer increased from 10 to $20{\mu}m$, oxygen flux decreased since thick active layer rather prevented oxygen molecules diffusing through the pores. And, STF infiltration improved oxygen flux due to enhanced oxygen reduction reaction rate. The experimental data announces that coating and property control of active layer is an effective method to improve oxygen flux of dual-phase oxygen transport membrane.

Effect of Addition Elements on the Production of the 2-17 Type High Performance of the Rare Earth Permanent Magnet Materials by the Reduction and Diffusion Process (환원·확산법에 의한 2-17형 고성능 희토류영구자석 재료의 제조에 있어서 첨가원소의 영향)

  • Song, Chang-Been;Cho, Tong-Rae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.333-339
    • /
    • 1995
  • The reduction and diffusion process(R-D process) is an economical way to produce the functional materials which contain rare-earth elements and has been applied to the production of rare-earth magnet meterials($SmCo_5$, $Nd_{15}Fe_{77}B_8$), magneto-optical(MO) target materials and hydrogen storage alloy, etc. However, because of difficult to control of the final composition, the R-D process has not been applied to production of the 2-17 type rare earth permanent magnet materials which contain several elements. Therefore, this work was as a basic study for the production of the 2-17 type rare earth permanent materials with composition $Sm(Co_{0.72}Fe_{0.21}Cu_{0.05}Zr_{0.03})_{7.9}$ by the R-D process, the following were mainy examined ; the amount of metallic calcium as a reductant, homogenization condition of the alloy after the R-D reaction, masuring of magnetic properties of the sample after step aging. The sample prepared by the R-D process contained a little more oxygen than that prepared by the melting method, however, showed almost the same magnetic properties.

  • PDF

Preferential Peroxidase Activity of Prostaglandin Endoperoxide H Synthase for Lipid Peroxides

  • Yun, Seol-Ryung;Han, Su-Kyong;Song, In-Seok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.94-94
    • /
    • 2001
  • Prostaglandin endoperoxide H synthase (PGHS) catalyzes the committed step in prostaglandins and thromboxane A$_2$-- oxygenation of arachidonic acid to the hydroperoxy endoperoxide PGG$_2$, followed by reduction PGG$_2$to the alcohol PGH$_2$. The two reactions by PGHS -- cyclooxygenase and peroxidase -- occur at distinct but structurally and functionally interconnected sites. The peroxidase reaction occurs at a heme-containing active site located near the protein surface. The cyclooxygenase reaction occurs in a hydrophobic channel in the core of the enzyme. Initially a peroxide reacts with the heme group, yielding Compound I and an alcohol derived from the oxidizing peroxide. Compound I next undergoes an intramolecular reduction by a single electron traveling from Tyr385 along the peptide chain to the proximal heme ligand, His388, and finally to the heme group. Following the binding of arachidonic acid, Tyr385 tyrosyl radical initiates the cyclooxygenase reaction by abstracting the 13-pro(5) hydrogen atom to give an arachidonyl radical, which sequentially reacts with two molecules of oxygen to yield PGG$_2$. In order to characterize PGHS peroxidase active site, we examined various lipid peroxides with purified recombinant ovine PGHS proteins and determined the rate constants. The results have shown that twenty-carbon unsaturated fatty acid hydroperoxides have similar efficiency in peroxidation by PGHS, irrespective of either the location of hydroperoxy group or the number of double bonds. It was also confirmed by the subsequent study with PGHS peroxidase active site mutants.

  • PDF

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.

Kinetic Study of Synthesis of Aluminum Nitride Using Carbon Reduction and Subsequent Nitridation Method (탄소환원질화법에 의한 AlN 합성의 속도론적 연구)

  • Park, Hyungkyu;Choi, Youngyoon;Nam, Chulwoo
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.39-46
    • /
    • 2017
  • AlN powder was prepared by carbon reduction and subsequent nitridation method through lab- scale experiments. AlN powder was synthesized using the mixture of high purity $Al_2O_3$ powder and carbon black at $1,600{\sim}1,700^{\circ}C$ for 0.5~6 hours under nitrogen atmosphere (flow rate of nitrogen gas: $4.7{\times}10^{-6}{\sim}20{\times}10^{-6}m^3/sec$) with variation of charged height of the mixture powder. Experimental results showed that size of the synthesized particles grows with increasing of temperature. The reaction activation energy was calculated as 382 kJ/mol at the temperature range, and it was considered that chemical reaction is the rate determining step. Content of oxygen and nitrogen of the prpared samples were 0.71~0.96 wt% and 30.7~35.1 wt%. The results was similar with those of the commercial AlN product.

Study of Optimization and Characteristics of PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) for IT-SOFC (중저온형 SOFC를 위한 PSCF3737(Pr0.3Sr0.7Co0.3Fe0.7O3) 공기극 물질의 특성 및 최적화께 관한 연구)

  • Park, Kwang-Jin;Lee, Chang-Bo;Kim, Jung-Hyun;Baek, Seung-Wook;Bae, Joong-Myeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.207-212
    • /
    • 2007
  • [ $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ ] is a good candidate cathode material for IT-SOFC(intermediate temperature solid oxide fuel cell) because of high MIEC(mixed ionic electronic conductor) conductivity. In this study, the characteristics of PSCF3737 was investigated and optimizations of sintering temperature and thickness for $PSCF3737(Pr_{0.3}Sr_{0.7}Co_{0.3}Fe_{0.7}O_3)$ was carried out. Impedance responses were divided into two parts by frequency region. Middle frequency part (${\sim}10^2\;Hz$) was concerned with oxygen reduction reaction on surface and low frequency part (${\sim}10^{-1}\;Hz$) was related with oxygen diffusion. The reasonable sintering temperature and thickness of cathode were $1200^{\circ}C$ and about $27\;{\mu}m$ with regard to EIS(electrochemical impedance spectroscopy). ASR(areas specific resistance) of optimized cathode is $0.115\;{\Omega}\;cm^2$ at $700^{\circ}C$.

Improvement of Electrical Properties of Diamond MIS (Metal-Insulator- Semiconductor) Interface by Gate Insulator and Application to Metal-Insulator- Semiconductor Field Effect Transistors (게이트 절연막에 의한 다이아몬드 MIS (Metal-Insulator-Semiconductor) 계면의 전기적 특성 개선과 전계효과 트랜지스터에의 응용)

  • Yun, Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.6
    • /
    • pp.648-654
    • /
    • 2003
  • Diamond MIS(Metal-Insulator-Semiconductor) diodes and MISFETs(Metal-Insulator-Semiconductor Field Effect Transistors) were fabricated by employing various fluorides as gate insulator, and their electrical properties were closely investigated by means of C-V measurements. The A1/BaF$_2$/diamond MIS structure exhibited outstanding electrical properties. The MIS diode showed a very low surface state density of ∼10$\^$10//$\textrm{cm}^2$ eV near the valence band edge, and the observed effective mobility(${\mu}$$\_$eff/) of the MISFET was 400 $\textrm{cm}^2$/Vs, which is the highest value obtained until now in the diamond FET. From the chemiphysical point of view, the above result might be explained by the reduction of adsorbed-oxygen on the diamond surface via strong chemical reaction by the constituent Ba atom in the insulator during the film deposition(Oxygen-Gettering Effect).

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.