• 제목/요약/키워드: oxygen reduction

검색결과 1,409건 처리시간 0.028초

One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction

  • Byambasuren, Ulziidelger;Jeon, Yukwon;Altansukh, Dorjgotov;Ji, Yunseong;Shul, Yong-Gun
    • Carbon letters
    • /
    • 제17권1호
    • /
    • pp.53-64
    • /
    • 2016
  • Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.

메탄올을 환원제로 사용하는 과잉산소 분위기에서 $La_2O_3$ 촉매를 이용한 NO의 환원에 관한 연구 (Catalytic Reduction of Nitric Oxide in Oxygen-Rich Exhaust with Methanol over $La_2O_3$ Catalysts)

  • 김상환;유현주;박정규
    • 한국자동차공학회논문집
    • /
    • 제13권2호
    • /
    • pp.135-141
    • /
    • 2005
  • Nitric oxide(NO) reduction by methanol was investigated over $La_2O_3$ catalysts in the presence and absence of oxygen. In the absence of $O_2$, $CH_3OH$ reduced NO to both $N_2$ and $N_2O$, with selectivity to $N_2$ formation decreasing from 81-88% at 623K to 47-71% at 723 K. With 1.2% $O_2$ in the feed, the rates were 4-8 times higher, but the selectivity to $N_2$ dropped from 50% at 623 K to 9% at 723 K. The specific activities with $La_2O_3$ for this reaction were higher than those for other reductants; for example, at 773 K with hydrogen a specific activity of $34\;{\mu}mol\;NO/sec{\cdot}m^2$ was obtained whereas that for methanol was $638\;{\mu}mol\;NO/sec{\cdot}m^2$. The Arrhenius plots were linear under differential reaction conditions, and the apparant activation energy was consistantly near 15 kcal/mol with $CH_3OH$. Linear partial pressure dependencies based on a power rate law were obtained and showed a near-zero order in $CH_3OH$ and a near-first order in $H_2$.

Effects of Oxygen Partial Pressure on Oxidation Behavior of CMnSi TRIP Steel in an Oxidation-Reduction Scheme

  • Kim, Seong-Hwan;Huh, Joo-Youl;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • 제16권1호
    • /
    • pp.15-22
    • /
    • 2017
  • An oxidation-reduction scheme is an alternative approach for improving the galvanizability of advanced high-strength steel in the continuous hot-dip galvanizing process. Here, we investigated the effect of oxygen partial pressure ($P_{O_2}$) on the oxidation behavior of a transformation-induced plasticity steel containing 1.5 wt% Si and 1.6 wt% Mn during heating to and holding for 60 s at $700^{\circ}C$ under atmospheres with various $P_{O_2}$ values. Irrespective of $P_{O_2}$, a thin amorphous Si-rich layer of Si-Mn-O was formed underneath the Fe oxide scale (a $Fe_2O_3/Fe_3O_4$ bilayer) in the heating stage. In contrast to Si, Mn tended to segregate at the scale surface as $(Fe,Mn)_2O_3$. The multilayered structure of $(Fe,Mn)_2O_3/Fe_2O_3/Fe_3O_4$/amorphous Si-Mn-O remained even after extended oxidizing at $700^{\circ}C$ for 60 s. $Fe_2O_3$ was the dominantly growing oxide phase in the scale. The enhanced growth rate of $Fe_2O_3$ with increasing $P_{O_2}$ resulted in the formation of more Kirkendall voids in the amorphous Si-rich layer and a less Mn segregation at the scale surface. The mechanisms underlying the absence of FeO and the formation of Kirkendall voids are discussed.

고분자 전해질 연료전지용 산소환원반응을 위한 비백금촉매의 활성에 대한 최신 연구 동향 (Recent advances in Studies of the Activity of Non-precious Metal Catalysts for the Oxygen Reduction Reaction in Polymer Electrolyte Membrane Fuel Cells)

  • 윤호석;정원석;최명호
    • 전기화학회지
    • /
    • 제23권4호
    • /
    • pp.90-96
    • /
    • 2020
  • 수소의 화학반응 에너지를 직접 전기 에너지로 변환하는 Polymer electolyte membrane fuel cells (PEMFCs)는 친환경 미래 운송수단 에너지원의 한 종류이다. PEMFCs의 내부에 산소 환원 반응이 매우 느리고 고가의 백금을 사용하기 때문에 이를 대체하려는 연구가 국내외에서 매우 활발히 연구되고 있다. 하지만 백금이외에 값싼 재료를 이용한 촉매의 경우 여전히 성능이 매우 상이하며 활성 향상에 대한 지표 등이 다양하다. 이에 본 총설은 non-precious metal catalyst (NPMC)의 활성 지표 등을 정리하고 최근 5년간의 자료를 요약하였다. 이를 통해 촉매재료의 선별, 합성시 주안점, 조촉매 등을 설명하며, 촉매 활성에 대한 연구의 필요성을 상기 시킬 수 있다. 이를 통해 귀금속 촉매가 널리 사용되는 분야에 적용할 수 있는 NPMC의 연구 및 개발에 기여할 수 있을 것으로 보인다. 또한 향후 연구개발의 최종적인 목표를 기술한다.

Co(Ⅱ)$(dimethyl bipyridine)_3(ClO_4)_2$의 전기화학적 성질과 산소환원에 대한 전극 촉매 효과 (Electrocatalytic Effect on the Oxygen Reduction and Electrochemical Properties of Co(Ⅱ)-dimethyl Bipyridine Perchlorate)

  • 김일광;박종술;한완수;김윤근;전일철
    • 대한화학회지
    • /
    • 제41권8호
    • /
    • pp.385-391
    • /
    • 1997
  • Co$(dimethyl bipyridine)_3(ClO_4)_2$의 확산계수$(D_0)$와 전극반응속도상수$(K_0)$를 순환전압전류법과 대시간전류법으로 구하였다. 확산계수에 대한 용매, 농도, 주사속도 등의 영향과 반응속도상수에 대한 온도변화의 영향을 조사하였다. 25$^{\circ}C$에서 확산계수는 $5.54{\times}10^{-6 }cm^2/sec$이었고, 반응속도상수는 $2.39{\times}10^{-3 }/s$ 이었으며, 용매의 점도가 커질수록 봉우리전류값과 확산계수는 감소하였다. 반응속도상수에 대한 온도의 영향으로부터, ${\Delta}G^{\neq},\;{\Delta}H^{\neq},\;{\Delta}S$ 등의 열역학적 파라미터를 구하였다. 이 화합물은 $O_2$분자의 환원에서 봉우리전류를 크게 증가시키고, 환원전위를 양(+)전위방향으로 이동시키는 열역학적 전극촉매현상을 보였다.

  • PDF

다중벽 탄소 나노 튜브에 담지한 PtxM(1-x)(M = Co, Cu, Ni) 합금촉매의 제조 및 고분자 전해질 연료전지에서 산소환원 특성 (Synthesis and Oxygen Reduction Reaction Characteristics of Multi-Walled Carbon Nanotubes Supported PtxM(1-x) (M = Co, Cu, Ni) Alloy Catalysts for Polymer Electrolyte Membrane Fuel Cell)

  • 정동원;박순;안치영;최성호;김준범
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.667-673
    • /
    • 2009
  • The electrocatalytic characteristics of oxygen reduction reaction of the $PtxM_{(1-x)}$ (M = Co, Cu, Ni) supported on multi-walled carbon nanotubes (MWNTs) have been evaluated in a Polymer Electrolyte Membrane Fuel Cell (PEMFC). The $Pt_xM_{(1-x)}$/MWNTs catalysts with a Pt : M atomic ratio of about 3 : 1 were synthesized and applied to the cathode of PEMFC. The crystalline structure and morphology images of the $Pt_xM_{(1-x)}$ particles were characterized by X-ray diffraction and transmission electron microscopy, respectively. The results showed that the crystalline structure of the Pt alloy particles in Pt/MWNTs and $Pt_xM_{(1-x)}$/MWNTs catalysts are seen as FCC, and synthesized $Pt_xM_{(1-x)}$ crystals have lattice parameters smaller than the pure Pt crystal. According to the electrochemical surface area (ESA) calculated with cyclic voltammetry analysis, $Pt_{0.77}Co_{0.23}$/MWNTs catalyst has higher ESA than the other catalysts. The evaluation of a unit cell test using Pt/MWNTs or $Pt_xM_{(1-x)}$/MWNTs as the cathode catalysts demonstrated higher cell performance than did a commercial Pt/C catalyst. Among the MWNTs-supported Pt and $Pt_xM_{(1-x)}$ (M = Co, Cu, Ni) catalysts, the $Pt_{0.77}Co_{0.23}$/MWNTs shows the highest performance with the cathode catalyst of PEMFC because they had the largest ESA.

전기화학적 석출을 통해 ITO 표면에 형성한 덴드라이트 백금 구조의 전기화학적 촉매 활성 (Electrocatalytic Activity of Dendritic Platinum Structures Electrodeposited on ITO Electrode Surfaces)

  • 최수희;최강희;김종원
    • 전기화학회지
    • /
    • 제17권4호
    • /
    • pp.209-215
    • /
    • 2014
  • 전기화학적 석출 방법을 이용하여 indium tin oxide 표면에 백금 나노구조를 형성하고 총 석출전하량을 조절하여 형성되는 나노구조의 변화에 따른 전기화학적 메탄올 산화 반응과 산소 환원반응에 대한 촉매 활성의 변화를 관찰하였다. 석출 전하량의 변화에 따라 생성되는 백금 나노구조체 표면의 특성을 주사 전자 현미경, 전기화학적 표면적 측정, X-선 회절법, 일산화탄소 벗김분석을 통해 규명하고 전기화학적 촉매 활성과의 연계성을 조사하였다. 전기화학적 촉매 활성은 형성된 백금 나노구조에 따라 달라지는데, 석출 전하량 $0.45C\;cm^{-2}$에 해당하는 백금 나노구조에서 가장 우수한 촉매 활성이 관찰되었다. 전하량에 따른 표면적의 변화보다 형성된 구조적 특이성과 결정면이 촉매 활성에 많은 영향을 미쳤다. 세밀한 백금 나노구조의 변화에 따른 전기화학적 촉매 활성 변화에 관한 본 연구결과는 보다 우수한 촉매 시스템을 고안하는 연구에 도움이 될 것이다.

유기 리간드 제어를 통한 고분산 팔라듐 나노 촉매의 합성 및 음이온교환막 연료전지를 위한 산소 환원 반응 특성 분석 (Synthesis of Highly Dispersed Pd Nanocatalysts Through Control of Organic Ligands and Their Electrochemical Properties for Oxygen Reduction Reaction in Anion Exchange Membrane Fuel Cells)

  • 성후광;;장정희;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.633-639
    • /
    • 2018
  • In anion exchange membrane fuel cells, Pd nanoparticles are extensively studied as promising non-Pt catalysts due to their electronic structure similar to Pt. In this study, to fabricate Pd nanoparticles well dispersed on carbon support materials, we propose a synthetic strategy using mixed organic ligands with different chemical structures and functions. Simultaneously to control the Pd particle size and dispersion, a ligand mixture composed of oleylamine(OA) and trioctylphosphine(TOP) is utilized during thermal decomposition of Pd precursors. In the ligand mixture, OA serves mainly as a reducing agent rather than a stabilizer since TOP, which has a bulky structure, more strongly interacts with the Pd metal surface as a stabilizer compared to OA. The specific roles of OA and TOP in the Pd nanoparticle synthesis are studied according to the mixture composition, and the oxygen reduction reaction(ORR) activity and durability of highly-dispersed Pd nanocatalysts with different particles sizes are investigated. The results of this study confirm that the Pd nanocatalyst with large particles has high durability compared to the nanocatalyst with small Pd nanoparticles during the accelerated degradation tests although they initially indicated similar ORR performance.

산소환원반응을 위한 탄화철이 내재된 질소 도핑된 탄소의 제조 (Synthesis of Fe3C-Embedded Nitrogen Doped Carbon for Oxygen Reduction Reaction)

  • 이영근;안건형;안효진
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.640-645
    • /
    • 2018
  • The design of non-precious electrocatalysts with low-cost, good stability, and an improved oxygen reduction reaction(ORR) to replace the platinium-based electrocatalyst is significant for application of fuel cells and metal-air batteries with high energy density. In this study, we synthesize iron-carbide($Fe_3C$) embedded nitrogen(N) doped carbon nanofiber(CNF) as electrocatalysts for ORRs using electrospinning, precursor deposition, and carbonization. To optimize electrochemical performance, we study the three stages according to different amounts of iron precursor. Among them, $Fe_3C$-embedded N doped CNF-1 exhibits the most improved electrochemical performance with a high onset potential of -0.18 V, a high $E_{1/2}$ of -0.29 V, and a nearly four-electron pathway (n = 3.77). In addition, $Fe_3C$-embedded N doped CNF-1 displays exellent long-term stabillity with the lowest ${\Delta}E_{1/2}=8mV$ compared to the other electrocatalysts. The improved electrochemical properties are attributed to synergestic effect of N-doping and well-dispersed iron carbide embedded in CNF. Consequently, $Fe_3C$-embedded N doped CNF is a promising candidate for non-precious electrocatalysts for high-performance ORRs.

다공성 탄소층이 코팅된 하이브리드 표면 구조를 갖는 산소 환원 반응용 PtCo 합금 나노 촉매 (Hybrid PtCo Alloy Nanocatalysts Encapsulated by Porous Carbon Layers for Oxygen Reduction Reactions)

  • 장정희;모니카 샤르마;성후광;김순표;정남기
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.646-652
    • /
    • 2018
  • During a long-term operation of polymer electrolyte membrane fuel cells(PEMFCs), the fuel cell performance may degrade due to severe agglomeration and dissolution of metal nanoparticles in the cathode. To enhance the electrochemical durability of metal catalysts and to prevent the particle agglomeration in PEMFC operation, this paper proposes a hybrid catalyst structure composed of PtCo alloy nanoparticles encapsulated by porous carbon layers. In the hybrid catalyst structure, the dissolution and migration of PtCo nanoparticles can be effectively prevented by protective carbon shells. In addition, $O_2$ can properly penetrate the porous carbon layers and react on the active Pt surface, which ensures high catalytic activity for the oxygen reduction reaction. Although the hybrid catalyst has a much smaller active surface area due to the carbon encapsulation compared to a commercial Pt catalyst without a carbon layer, it has a much higher specific activity and significantly improved durability than the Pt catalyst. Therefore, it is expected that the designed hybrid catalyst concept will provide an interesting strategy for development of high-performance fuel cell catalysts.