• Title/Summary/Keyword: oxygen potential

Search Result 1,458, Processing Time 0.025 seconds

Reduction of the Flow Accelerated Corrosion within Low Pressure Evaporator Connection Pipe by Interception of Hydrazine for Water Treatment (탈산소제 차단 수처리에 의한 배열회수보일러 저압증기발생기 연결배관내의 유동가속부식 저감)

  • Son, Byung-Gwan;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.9 no.4
    • /
    • pp.26-30
    • /
    • 2013
  • Based on case that HRSG low pressure steam generator tube was damaged by FAC in 500 MW A CCPP. This case analyzed the effect of application about the block of hydrazine water treatment which is applied for increasing dissolved oxygen. And also try to deduce the major factor of FAC Which is caused by lacking of dissolved oxygen of boiler feed system. After 1 year of water treatment, the figure of dissolved oxygen in the boiler feed water has increased from 0.15 ppb to 3~5 ppb and the figure of oxidation reduction potential has increased from -245 mV to 170 mV. And Iron content, the corrosion products by FAC has decreased from 18.5 ppb to 5~7 ppb. According to the result of experiment, we could able to confirm that the interception of hydrazine of water treatment is effective to reduce FAC.

  • PDF

Microbial Activity of Gravel Intertidal Zone for Purification of Polluted Near Shore Water

  • Song, Young-Chae;Gu, Ja-Hwan;Park, In-Seok;Yoo, Jong-Su
    • Journal of Navigation and Port Research
    • /
    • v.28 no.2
    • /
    • pp.155-159
    • /
    • 2004
  • Microbial activity of biofilm formed on the surface of gravels from intertidal zone was estimated using an aerobic respirometer system, and compared with that of suspended marine microorganisms contained in a near shore water, The maximum oxygen uptake rate of the suspended marine microorganisms was 0.15mg$O_2$/L/hr, indicating the potential of purification of polluted near shore water. For the gravels from the intertidal zone, the maximum uptake rate of oxygen was affected by the vertical positions, but their gross value was 0.77mg $O_2$/L/hr, which was around 5.1 times higher than the purification potential of polluted near shore water by the microorganisms contained in the near shore water. The nitrogen removed by the gravels from the intertidal zone and the marine microorganisms was about 1/20-1/39 times of the total consumption of oxygen, which was similar to that of the phosphate. The gravel intertidal zone contained lots of particulate organics, over than that in the near shore water, and this was confirmed from the large difference between total oxygen consumption and the removed soluble COD in the microbial activity test. This indicates that the gravel intertidal zone plays an important role in controlling the non-point source pollutants from land, as well as self-purification of polluted near shore water by trapping and degrading the particulate organics.

Oligomerized polyphenols in lychee fruit extract supplements may improve high-intensity exercise performance in male athletes: a pilot study

  • Kawamura, Aki;Hashimoto, Shun;Suzuki, Miho;Ueno, Hiromasa;Sugita, Masaaki
    • Korean Journal of Exercise Nutrition
    • /
    • v.25 no.3
    • /
    • pp.8-15
    • /
    • 2021
  • [Purpose] Excessive reactive oxygen species (ROS) induced by prolonged high-intensity exercise can cause structural and functional damage. Antioxidant polyphenol supplementation, which reduces ROS levels, may improve high-intensity exercise performance. We evaluated the effect of lychee fruit extract, which contains high levels of low-molecular-weight oligomerized polyphenols, on high-intensity exercise performance. [Methods] Ten male athletes were included in an open-label trial that consisted of control and intervention phases, with a 7-day washout period between phases. The participants were administered oligomerized lychee fruit extract for seven days, whereas no intervention was given in the control phase. High-intensity intermittent exercise and the Wingate test were performed. The power output, blood lactate levels, reactive oxygen metabolite levels, biological antioxidant potential, heart rate, and rate of perceived exertion were measured. [Results] The average power output was significantly higher in the intervention phase than in the control phase (P < 0.01), while the change in blood lactate levels was significantly lower in the intervention phase than in the control phase (P < 0.05). The average heart rate was significantly higher in the intervention phase than in the control phase (P < 0.05), without changing the rate of perceived exertion. Although there was no difference in reactive oxygen metabolite levels between the phase, the change in biological antioxidant potential was larger in the intervention phase than in the control phase (P = 0.06). The Wingate test showed no significant differences between the phase. [Conclusion] Short-term loading with oligomerized lychee fruit extract may increase performance during high-intensity intermittent exercise by improving metabolism.

Ethanolic extract of Condurango (Marsdenia condurango) used in traditional systems of medicine including homeopathy against cancer can induce DNA damage and apoptosis in non small lung cancer cells, A549 and H522, in vitro

  • Sikdar, Sourav;Mukherjee, Avinaba;Boujedaini, Naoual;Khuda-Bukhsh, Anisur Rahman
    • CELLMED
    • /
    • v.3 no.1
    • /
    • pp.9.1-9.10
    • /
    • 2013
  • In traditional systems of medicine including homeopathy, the Condurango extract (Con) is often used to cure stomach cancer mainly, without having any scientific validation of its anti-cancer ability. Con has therefore been tested against non-small-cell lung cancer cells (NSCLC) A549 and NCI-H522 (H522) known to contain the KRAS mutation, making them resistant to most chemotherapeutic agents. As cancer cells generally defy cytotoxicity developed by chemopreventive agents and escape cell death, any drug showing the capability of preferentially killing cancer cells through apoptosis is worth consideration for judicious application. A549 and H522 cells were exposed to $0.35{\mu}g/{\mu}l$ and $0.25{\mu}g/{\mu}l$ of Con, respectively, for 48 h and analysed based on various protocols associated with apoptosis and DNA damage, such as MTT assay to determine cell viability, LDH assay, DNA fragmentation assay, comet assay, and microscopical examinations of DNA binding fluorescence stains like DAPI, Hoechst 33258 and acridine orange/ethidium bromide to determine the extent of DNA damage made in drug-treated and untreated cells and the results compared. Changes in mitochondrial membrane potential and the generation of reactive oxygen species were also documented through standard techniques. Con killed almost 50% of the cancer cells but spared normal cells significantly. Fluorescence studies revealed increased DNA nick formation and depolarized membrane potentials after drug treatment in both cell types. Caspase-3 expression levels confirmed the apoptosis-inducing potential of Con in both the NSCLC lines. Thus, overall results suggest considerable anticancer potential of Con against NSCLC in vitro, validating its use against lung cancer by practitioners of traditional medicine including homeopathy.

Effects of Organic Content on Anaerobic Biodegradability of Sludge Generating from Slaughterhouse

  • Oh, Seung-Yong;Kim, Ho;Kim, Chang-Hyun;Kim, Seung-Hwan;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.4
    • /
    • pp.296-302
    • /
    • 2013
  • This study was carried out to investigate the effect of organic content level on ultimate methane potential and anaerobic biodegradability of substrate by biochemical methane potential assay. Three organic matters (whole sludge and liquid and solid fraction of sludge) of the same origin, which had different organic contents, were fermented at the batch anaerobic reactor for 70 days. Ultimate methane potential and anaerobic biodegradability were determined by the terms of volatile solid (VS) and chemical oxygen demand (COD). Volatile solid contents of whole sludge and solid and liquid fraction of sludge were 2.4, 18.8, and 0.2% and COD were 5.3, 30.4, and 0.5%, respectively. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{VS}$) determined by VS content were $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for whole sludge, $0.5Nm^3kg^{-1}-VS_{added}$, 76.3% for the liquid fraction of sludge, and $0.6Nm^3kg^{-1}-VS_{added}$, 77.0% for the solid fraction of sludge. Ultimate methane potentials ($B_u$-COD) and anaerobic biodegradability ($D_{COD}$) determined by COD were $0.2Nm^3kg^{-1}-COD_{added}$, 73.4% for whole sludge, $0.2Nm^3kg^{-1}-VS_{added}$, 74.0% for the liquid fraction of sludge, and $0.33Nm^3kg^{-1}-COD_{added}$, 99.1% for the solid fraction of sludge. In conclusion, ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results because COD might be underestimated by the interference of $NH_4{^+}$ in the case of highly concentrated organic material.

Influence of Redox Potential Current Density on Polarization Curves with Polypropylene Polymer

  • Park, Chil-Nam;Kim, Myung-Sun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • Experiments were carried out to measure the corrosion potential and current density variations in the polarization curves of polypropylene. In particular, the results were examined to identify those influences affecting the corrosion potential, such as temperature, pH, salt, and oxygen. The Tafel slope for the anodic dissolution was determined based on the polarization effect under various conditions. Furthermore, the optimum conditions for the most rapid transformation were establish based on a variety of conditions, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(I(sub)r/I(sub)f). This I(sub)r/I(sub)f value was then used to measure the critical corrosion sensitivity of polypropylene. The potentiodynamic parameters of corrosion were obtained using a Tafel plot.

  • PDF

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

The Toxic Effects of Mysid, Neomysis awatschensis Exposed to Organotin (유기주석 노출에 의한 Mysid, Neomysis awatschensis의 독성 영향)

  • 지정훈;김상규;황운기;강주찬
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.4
    • /
    • pp.357-362
    • /
    • 2002
  • Tests for the toxicity of tributyltin (TBT) were conducted on mysid collected from Dadepo beach, Pusan, Korea. The toxic effects of tributyltin on the survival, growth and oxygen consumption of the mysid, Neomysis awatschensis have been evaluated. Mysids were exposed to several concentrations of TBT (0, 0.56, 1.15, 3.07 and 6.12 $\mu\textrm{g}$/L) for 6 weeks. Survival rate was decreased with increases in concentration and exposure time and the reduction of more than 40% occurred at TBT concentration greater than 1.15 $\mu\textrm{g}$/L after 6 weeks. Growth rate was significantly decreased at concentrations greater than 1.15 $\mu\textrm{g}$/L. Oxygen consumption rate was also decreased in a concentration-dependent way and significantly decreased to 39,47 and 69% of the control at 1.15, 3.07 and 6.12 $\mu\textrm{g}$/L, respectively. These results indicate that the contamination of aquatic environment by TBT has the potential to significantly reduce coastal and estuaries recruitment of mysids.

Potential roles of reactive oxygen species derived from chemical substances involved in cancer development in the female reproductive system

  • Kim, Soo-Min;Hwang, Kyung-A;Choi, Kyung-Chul
    • BMB Reports
    • /
    • v.51 no.11
    • /
    • pp.557-562
    • /
    • 2018
  • Reactive oxygen species (ROS) are major sources of cellular oxidative stress. Specifically, cancer cells harbor genetic alterations that promote a continuous and elevated production of ROS. While such oxidative stress conditions could be harmful to normal cells, they facilitate cancer cell growth in multiple ways by causing DNA damage and genomic instability, and ultimately by reprogramming cancer cell metabolism. This review provides up to date findings regarding the roles of ROS generation induced by diverse biological molecules and chemicals in representative women's cancer. Specifically, we describe the cellular signaling pathways that regulate direct or indirect interactions between ROS homeostasis and metabolism within female genital cancer cells.

Controllable Etching of 2-Dimentional Hexagonal Boron Nitride by Using Oxygen Capacitively Coupled Plasma

  • Qu, Deshun;Yoo, Won Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.170-170
    • /
    • 2013
  • We present a novel etching technique for 2-dimentional (2-D) hexagonal boron nitride (h-BN) by using capacitively coupled plasma (CCP) of oxygen combined with a post-treatment by de-ionized (DI) water. Oxygen CCP etching process for h-BN has been systematically studied. It is found that a passivation layer was generated to obstruct further etching while it can be easily and radically removed by DI water. An essential cleaning effect also has been observed in the etching process, organic residues are successfully removed and the surface roughness has much decreased. Considering h-BN is the most important 2-D dielectric material and its potential application for graphene to silicon-based electronic devices, such an etching method can be widely used to control the 2-D h-BN thickness and improve the surface quality.

  • PDF