• Title/Summary/Keyword: oxygen gas sensor

Search Result 96, Processing Time 0.053 seconds

Development of Cylindrical Capacitive-Conductive Sensor to Evaluate Insulating Degradation for FCEV Stack (차량용 연료전지 스택의 절연열화 진단을 위한 원통형 정전용량-전기전도도 센서개발)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Cui, Jiang-Yue;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Consequently it was developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid.

Oxygen Vacancy Effects of Two-Dimensional Electron Gas in SrTiO3/KNbO3 Hetero Structure

  • Choi, Woo-Sung;Kang, Min-Gyu;Do, Young-Ho;Jung, Woo-Suk;Ju, Byeong-Kwon;Yoon, Seok-Jin;Yoo, Kwang-Soo;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.244-248
    • /
    • 2013
  • The discovery of a two-dimensional electron gas (2DEG) in $LaAlO_3$ (LAO)/$SrTiO_3$ (STO) heterostructure has stimulated intense research activity. We suggest a new structure model based on $KNbO_3$ (KNO) material. The KNO thin films were grown on $TiO_2$-terminated STO substrates as a p-type structure ($NbO_2/KO/TiO_2$) to form a two-dimensional hole gas (2DHG). The STO thin films were grown on KNO/$TiO_2$-terminated STO substrates as an n-type structure to form a 2DEG. Oxygen pressure during the deposition of the KNO and STO thin films was changed so as to determine the effect of oxygen vacancies on 2DEGs. Our results showed conducting behavior in the n-type structure and insulating properties in the p-type structure. When both the KNO and STO thin films were deposited on a $TiO_2$-terminated STO substrate at a low oxygen pressure, the conductivity was found to be higher than that at higher oxygen pressures. Furthermore, the heterostructure formed at various oxygen pressures resulted in structures with different current values. An STO/KNO heterostructure was also grown on the STO substrate, without using the buffered oxide etchant (BOE) treatment, so as to confirm the effects of the polar catastrophe mechanism. An STO/KNO heterostructure grown on an STO substrate without BOE treatment did not exhibit conductivity. Therefore, we expect that the mechanics of 2DEGs in the STO/KNO heterostructures are governed by the oxygen vacancy mechanism and the polar catastrophe mechanism.

Synthesis of Ce-doped In2O3 nanoparticles via a microwave-assisted hydrothermal pathway and their application as an ultrafast breath acetone sensor

  • Byeong-Hun Yu;Sung Do Yun;Chan Woong Na;Ji-Wook Yoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.393-400
    • /
    • 2023
  • Acetone, a metabolite detected from the exhaled breath of people doing a diet, can be used for non-invasive monitoring of diet efficiency. Thus, gas sensors with rapid response and recovery characteristics to acetone need to be developed. Herein, we report ultrafast acetone sensors using Ce-doped In2O3 nanoparticles prepared by the one-pot microwave-assisted hydrothermal method. The pure In2O3 sensor shows a high response and fast response time (τres = 6 s) upon exposure to 2 ppm acetone at 300 ℃, while exhibiting a relatively sluggish recovery speed (τrecov = 1129 s). When 20 wt% Ce is doped, the τrecov of the sensor significantly decreased to 45 s withholding the fast-responding characteristic (τres = 6 s). In addition, the acetone response (resistance ratio, S) of the sensor is as high as 5.8, sufficiently high to detect breath acetone. Moreover, the sensor shows similar acetone sensing characteristics even under a highly humid condition (relative humidity of 60%) in terms of τres (6 s), τrecov (47 s), and S (4.7), demonstrating its high potential in real applications. The excellent acetone sensing characteristics of Ce-doped In2O3 nanoparticles are discussed in terms of their size, composition, phase, and oxygen adsorption on the sensing surface.

Fabrication and Characterization of an optical oxygen gas sensor formed on the planar optical waveguide prepared by ion exchang method (이온 교환법으로 제조된 평판형 광도파로의 산소광센서의 제작 및 특성평가)

  • 정채환;김재성;김원효;이병택;문종하;김진혁
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.178-179
    • /
    • 2002
  • 최근에 화학, 임상병리, 환경 감시 등의 분야에서 산소센서의 수요가 점차 증가하고 있다. 이러한 산소 센서 중에 가장 많이 쓰이는 방식은 산화물 전극을 사용하는 amperometric 방법이지만 이 방법들은 장기간에 걸쳐 볼 때 산화물 전극의 오염, 외부 자기장의 간섭 등의 제점 때문에 산소를 측정하는데 많은 어려움이 있다. (1) 따라서 최근에는 빛과 유기염료를 통하여 산소의 농도가 증가할수록 세기가 quenching이 되는 원리를 이용한 산소센서의 연구가 이루어졌다. (중략)

  • PDF

A Study on the Characteristics of Mass Transfer in Hollow Fiber Membranes (중공사막에서의 물질전달 특성에 관한 연구)

  • 김기범;김종석;김종수;유일수;이왕로;김성종
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • This paper presents the enhancement of oxygen transfer efficiency using vibrating intravascular lung assist device (VIVLAD) for patients having chronic respiratory problems. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-actuator, a function generator, and a power amplifier. Gas flow rates of up to 6 L/min through the 120-cm-long hollow fibers have been achieved by exciting a piezo-actuator. The output PVDF sensor and FRF (frequency response function) were investigated by various frequency in VIVLAD. As a result, the maximum oxygen transfer rate was found to occur with maximum amplitude and the transfer of vibration to the hollow fiber membranes. It was excited by the frequency band of 35 Hz at various distilled water flow rates, and various module types.

Characterization of O2 ionosorption induced potential changing property of SnO2 nanowire with Kelvin force microscopy (KFM)

  • Heo, Jinhee;Won, Soonho
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.359-362
    • /
    • 2012
  • We have employed Kelvin force microscopy (KFM) system to measure the potential change of a single SnO2 nanowire which had been synthesized on the Au thin film by a thermal process. By using the KFM probing technique, Rh coated conducting cantilever can approach a single SnO2 nanowire in nano scale and get the potential images with oscillating AC bias between Au electrode and cantilever. Also, during imaging the potential status, we controlled the concentration of oxygen in measuring chamber to change the ionosorption rate. From the results of such experiments, we verified that the surface potential as well as doping type of a single SnO2 nanowire could be changed by oxygen ionosorption.

A Study on the Electrical Properties of Pt Thin film RTD for Temperature Sensor (온도센서용 Pt박막 측온저항체의 전기적 특성에 관한 연구)

  • 문중선;정광진;최성호;조동율;천희곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • Pt thin film of about 7000$\AA$ thickness was deposited on the alumina substrate using DC Magnetron Sputter and the characteristics of the film for temperature sensor were investigated. When film of about 7000$\AA$ thickness was deposited at working gas pressure of $2.0{\times}10^{-3}$torr, sputtering power of 50W, substrate temperature of $350^{\circ}C$(Ts), sheet resistance(Rs), resistivity($\rho$) and temperature coefficient of resistivity(TCR) of the film were respectively 0.39$\Omega$/$\square$, 27.60$\mu\Omega$-cm and $3350 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min in hydrogen ambient, Rs, $\rho$ and TCR were respectively 0.236$\Omega$/$\square$, 15.18$\mu\Omega$-cm and 3716 ppm/$3716 ppm/^{\circ}C$. When working gas of 15sccm oxygen and 100sccm Argon were used, Rs, $\rho$ and TCR were respectively 0.335$\Omega$/$\square$, 22.45$\mu\Omega$-cm and $3427 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min, Rs, $\rho$and TCR were respectively 0.224/$\Omega$$\square$, 14$\mu\Omega$-cm and $3760 ppm/^{\circ}C$ and the characteristics of the film were much improved.

  • PDF

Design and Experiment of a Micro Electronic System for Prediction of Alveolar-Gas Partial Pressures

  • Kim, Da-Jung;Chang, Keun-Shik;Kim, Sa-Ji;Park, Hye-Yun;Suh, Gee-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.187-193
    • /
    • 2010
  • In this study we have designed and fabricated an inexpensive micro electronic system that we call Alvitek. It can indirectly but accurately predict and display the partial pressures of alveolar oxygen and carbon dioxide for the patients in the ICU of a hospital. Alvitek consists of both hardware part and software part. Performance of the system is tested by animal experiment with pigs for various $F_{t}e_{2}$ and RR(Respiratory Rate) values under the mechanical ventilation. The predicted alveolar gas partial pressures are cprpared with the approximate alveolar oxygen partial pressures easily calculated by the physician’s bedside formula. As a result, we have concluded that the relative error of A-$aDe_2$ calculated by the bedside formula grows seriously for lower $F_{t}e_{2}$ values. The present prediction method of Alvitek is henceforth believed very meaningful to the physicians. The system hardware and software are described in the text.

Evaluation about Dielectric Property of Heat Transfer Fluids for Fuel Cell Vehicle using Cylindrical Multi-Terminal Capacitive-Conductive Sensor (원통형 다전극식 정전용량-전기전도도 센서를 이용한 연료전지 차량용 냉각수의 유전특성 평가)

  • Kim, Jae-Hoon;Kim, Ju-Han;Kim, Yoon-Hyung;Choi, Kang-Wal;Han, Sang-Ok;Yong, Gee-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1087-1094
    • /
    • 2010
  • We have developed a cylindrical multi-terminal capacitive-conductive sensor that could be attached to the internal surface of cooling system pipe to evaluate capacitance and conductivity of heat transfer fluid. It was used as measuring system to diagnose insulating condition, by which was kept a insulating resistance of inner stack and at the same time was cooled electrochemical heat of reaction of FCEV(fuel cell electric vehicle) stack that used a compressed hydrogen gas reacting with oxygen in accordance with variation on thermal degradation of nonconductive heat transfer fluid. Also to assess diagnosis characteristics of heat transfer fluid, i.e. coolant, we have performed accelerated aging test using developed sensor attached to cooling system. Consequently, it was measured dielectric and electric resistance of coolant to estimate and analyse for dielectric properties by degradation condition.

Low-Temperature Operating $SnO_2$ Nanowire $NO_2$ Sensor

  • Jung, Tae-Hwan;Kwon, Soon-Il;Kim, Yeon-Woo;Park, Jae-Hwan;Lim, Dong-Gun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.485-486
    • /
    • 2008
  • The network structure of $SnO_2$ nanowires was fabricated on the electrodes by a simple thermal evaporation process from Sn metal powders and oxygen gas. The diameter of the nanowires was $20\;{\sim}\;60\;nm$ depending on the processing conditions. The operating temperature of the sensor could be decreased down below $50^{\circ}C$ by controlling the properties of the nanowires and the structures of the electrodes. The sensitivities were $10\;{\sim}\;15$ when the $NO_2$ concentrations were $10\;{\sim}\;50\;ppm$ at the operating temperature of $50^{\circ}C$.

  • PDF