• Title/Summary/Keyword: oxygen annealing

Search Result 506, Processing Time 0.032 seconds

Hydrogen Annealing effect on the dielectric properties of $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3$ thin film

  • Lee, Eun-Sun;Chung, Hyun-Woo;Lim, Sung-Hoon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.41-43
    • /
    • 2004
  • Dielectric thin films of $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3$ were deposited on $Pt(111)/Ti/SiO_2/Si$ substrates in situ by pulsed laser deposition(PLD) and annealed with different gases which are forming gas and oxygen gas, respectively. The diffusion of hydrogen into the ferroelectric film was caused by annealing process and resulted in the destruction of polarization. The dielectric properties of forming gas annealed PLT thin films, which are dielectric constant, ferroelectric characteristic, and leakage current characteristics, were degraded

  • PDF

High resistivity Czochralski-grown silicon single crystals for power devices

  • Lee, Kyoung-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.137-139
    • /
    • 2008
  • Floating zone, neutron transmutation-doped and magnetic Czochralski silicon crystals are being widely used for fabrication power devices. To improve the quality of these devices and to decrease their production cost, it is necessary to use large-diameter wafers with high and uniform resistivity. Recent developments in the crystal growth technology of Czochralski silicon have enable to produce Czochralski silicon wafers with sufficient resistivity and with well-controlled, suitable concentration of oxygen. In addition, using Czoehralski silicon for substrate materials may offer economical benefits, First, Czoehralski silicon wafers might be cheaper than standard floating zone silicon wafers, Second, Czoehralski wafers are available up to diameter of 300 mm. Thus, very large area devices could be manufactured, which would entail significant saving in the costs, In this work, the conventional Czochralski silicon crystals were grown with higher oxygen concentrations using high pure polysilicon crystals. The silicon wafers were annealed by several steps in order to obtain saturated oxygen precipitation. In those wafers high resistivity over $5,000{\Omega}$ cm is kept even after thermal donor formation annealing.

Effect of Oxygen Contents in Thermal Annealed ZnO films on Structural and Optical Properties (열처리한 ZnO 박막 내의 산소 농도 변화에 따른 구조적, 광학적 특성 연구)

  • Lee, Ju-Young;Kim, Hong-Seung;Jung, Eun-Soo;Jang, Nak-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.600-604
    • /
    • 2005
  • We studied that structural and optical properties of ZnO films depend on oxygen contents. ZnO films were deposited on Si (111) substrates at room temperature by rf sputtering system and the thickness of films was 100 nm. The ZnO films were annealed in thermal furnace for 2 h at 800 and $900^{\circ}C$ in $H_2O,\;N_2$, and air ambient gases to control oxygen contents. We used AES, PL, XRD, AFM. As our result, crystal quality and luminescence improved until O/Zn is 1. However, when O/Zn ratio Is larger than 1, the structural and optical properties were getting worse.

The Strategy to Fabricate the MTiO3(M = Sr, Ba) Thin Films by Laser Ablation

  • Im, T.M.;Park, J.Y.;Kim, H.J.;Choi, H.K.;Jung, K.W.;Jung, D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.427-430
    • /
    • 2008
  • BaTiO3 and SrTiO3 thin films were fabricated on Pt/Ti/SiO2/Si substrate by the pulsed laser deposition process. The dependence of the deposited film quality upon the partial oxygen pressure during the deposition process was importantly examined. Regardless of the oxygen pressure, the as-deposited films were not fully crystallized. However, the film deposited at low oxygen pressure became well crystallized after the annealing process. It was concluded, therefore, that the partial oxygen pressure is reduced as low as possible during the deposition process and then anneal the as-deposited samples at ambient pressure to fabricate the well crystallized SrTiO3 and BaTiO3 films by laser ablation.

Processing of Tin Oxide Nanoparticles by Inert Gas Condensation Method and Characterization

  • Simchi, Abdolreza;Kohi, Payam
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.122-123
    • /
    • 2006
  • Tin oxide nanoparticles (n-SnO and $n-SnO_2$) were synthesized by the inert gas condensation (IGC) method under dynamic gas flow of oxygen and argon at various conditions. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) method were used to analysis the size, shape and crystal structure of the produced powders. The synthesized particles were mostly amorphous and their size increased with increasing the partial pressure of oxygen in the processing chamber. The particles also became broader in size when higher oxygen pressures were applied. Low temperature annealing at $320^{\circ}C$ in air resulted to crystallization of the amorphous n-SnO particles to $SnO_2$.

  • PDF

Structure and Magnetic Properties of Cr2O3/CrO2 Nanoparticles Prepared by Reactive Laser Ablation and Oxidation under High Pressure of Oxygen

  • Si, P.Z.;Wang, X.L.;Xiao, X.F.;Chen, H.J.;Liu, X.Y.;Jiang, L.;Liu, J.J.;Jiao, Z.W.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.211-214
    • /
    • 2015
  • $Cr_2O_3$ nanoparticles were prepared via one-step reactive laser ablation of Cr in oxygen. The metastable $CrO_2$ phase was obtained through the subsequent oxidation of $Cr_2O_3$ nanoparticles under $O_2$ with gas pressures of up to 40 MPa. The as-prepared $Cr_2O_3$ nanoparticles are spherical or rectangular in shape with sizes ranging from 20 nm to 50 nm. High oxygen pressure annealing is effective in producing meta-stable $CrO_2$ from as-dried $Cr_2O_3$ nanoparticles, and the $Cr_2O_3$ nanoparticles exhibit a weak ferromagnetic behavior with an exchange bias of up to 11 mT that can be ascribed to the interfacial exchange coupling between uncompensated surface spins and the antiferromagnetic core. The $Cr_2O_3/CrO_2$ nanoparticles exhibit an enhanced saturation magnetization and a reduced exchange bias with an increasing faction of $CrO_2$ due to the elimination of uncompensated surface spins over the $Cr_2O_3$ nanoparticles when exposed to a high pressure of $O_2$ and/or possible phase segregation that results in a smaller grain size for both $Cr_2O_3$ and $CrO_2$.

Oxidation resistnace of TaSiN diffusion barrier layers for Semiconductor memory device application (반도체 메모리 소자 응용을 위한 TaSiN 확산 방지층의 산화 저항성)

  • Shin, Woong-Chul;Lee, Eung-Min;Choi, Young-Sim;Choi, Kyu-Jeong;Choi, Eun-Suck;Jeon, Young-Ah;Park, Jong-Bong;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.749-764
    • /
    • 2000
  • Amorphous TaSiN thin films of about 90 nm thick were deposited onto poly-Si and $SiO_2/Si$ substrates by rf magnetron sputtering method. TaSiN films exhibited amorphous phase with no crystllization up to $900^{\circ}C$ in oxygen ambient. The penetration depth of oxygen diffusion increased with increasing annealing temperature in oxygen ambient and reached 20 nm deep in a $Ta_{23}Si_{29}N_{48}$ layer at $600^{\circ}C$ for 30min. The resistivity of as-deposited $Ta_{23}Si_{29}N_{48}$ thin films was about $1,300{\mu}{\Omega}-cm$, however those of annealed films markedly increased above $700^{\circ}C$ in oxygen ambient as the annealing temperature increased.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

The Effect of Annealing Heat Treatment by Anodic Polarization Impedance Experiments for Cu-10%Ni Alloy

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.536-541
    • /
    • 2015
  • Copper has been used extensively as an electric wire or as a base material in various types of machineries owing to its good electrical and thermal conductivity and good fabricating property, as well as its good corrosion resistance compared to iron. Furthermore, the copper-nickel alloy has significant corrosion resistance in severely corrosive environments. Although, cupro-nickel alloy shows better corrosion resistance than the brass and bronze series, this alloy also corroded in severely corrosive environments, including aggressive chloride ions, dissolved oxygen, and condition of fast flowing seawater. In this study, and annealing treatment at various annealing temperatures was carried out on the cupro-nickel (Cu-10%Ni) alloy, and the effects of annealing were investigated using electrochemical methods, such as measuring the polarization and impedance behaviors under flowing seawater conditions. The corrosion resistance increased by annealing compared to non heat treatment in the absence of flowing seawater. In particular, the sample annealed at $200^{\circ}C$ exhibited the best corrosion resistance. The impedance in the presence of flowing seawater showed higher values than in the absence of flowing seawater. Furthermore, the highest impedances was observed in the sample annealed at $800^{\circ}C$, irrespective of the present of flowing seawater. Consequently, the corrosion resistance of cupro-nickel (Cu-10%Ni) alloy in a severely corrosive environment can be improved somewhat by annealing.