• 제목/요약/키워드: oxide spinel

검색결과 146건 처리시간 0.021초

Oxidation Study on the Fabrication of Fe-36Ni Oxide Powder from Its Scrap

  • Yun, Jung Yeul;Park, Man Ho;Yang, Sangsun;Lee, Dong-Won;Wang, Jei-Pil
    • 한국분말재료학회지
    • /
    • 제20권1호
    • /
    • pp.48-52
    • /
    • 2013
  • A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to $1000^{\circ}C$ and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, $(Ni,Fe)_3O_4$.

Magnetic Properties and Cation Distribution of Phosphorous-Doped $Co-{\gamma}-{Fe_2} {O_3}$ Particles

  • Na, J.G.;Han, D.H.
    • Journal of Magnetics
    • /
    • 제1권1호
    • /
    • pp.51-54
    • /
    • 1996
  • The effects of additional P-doping on the magnetic properties, thermal stability and cation distribution of Co-doped ${\gamma}-{Fe_2} {O_3}$have been investigated by means of magnetic annealing and measurements with vibration sample magnetometer and torque magnetometer. It is found that the P-doping promotes the coercivity and its magnetic-thermal stability, which may be attributed to increase of the cubic magneto-crystalline anisotropy constant, $K_1$ and the activation energy, E, for cation rearrangement, respectively. The cation distribution of P and Co-substituted iron oxide was calculated from the variation of the saturation magnetization with P-doping on the basis of the Neel model. It was found that the most of P ions in the iron oxides occupied the B-site of spinel lattice.

  • PDF

Heteroepitxial p-n 접합을 위한 합리적 물질 설계

  • 이상훈;이태일;황성환;황성환;명재민
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.86.2-86.2
    • /
    • 2012
  • 산화금속은 높은 결정성, quantum size effect, 높은 투과도, 대기중의 안정도 등과 같은 탁월한 성질들로 인하여 오늘날 실리콘의 대체물로서 많은 연구가 보고되고 있다. 이러한 금속산화물의 크기와 모양을 조절하며 대량 생산하기 위한 합성방법으로 가수분해, 금속양이온 응축법과 같은 다양한 수용액상 방법이 연구되고 있다. 하지만 2차원 단일 층에 나노물질을 정렬하고 전기적 접합을 형성하는 것이 매우 어렵다는 점 때문에 나노물질을 기판 위에 자유롭게 성장시키는 방법에 대해서는 아직 많이 보고 되어있지 않다. 본 연구에서 저온의 수용액에서 1차원의 나노막대가 2차원의 스피넬 구조 위에 heteroepotaxial 접합을 이루며 성장시키는 방법을 이용하였다. P-n접합 형성을 위하여 (0001)방향으로 배향된 n-type ZnO 나노막대를 (111)방향의 p-type Co3O4 나노플레이트 위에 성장시킨 구조를 제작하였으며 이를 바탕으로 다이오드소자를 제작하여 ideal factor, turn-on voltage, rectifying ratio등의 전기적 특성을 평가하였다.

  • PDF

Effect of Calcination Temperature on the Structure and Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials

  • Ju, Seo Hee;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권1호
    • /
    • pp.59-62
    • /
    • 2013
  • Spinel $LiMn_{1.5}Ni_{0.5}O_4$ cathode powders with different morphologies were synthesized by a co-precipitation method using oxalic acid. The calcination temperature affected the morphologies, crystalline structure and electrochemical properties of the $LiMn_{1.5}Ni_{0.5}O_4$ powders. The $LiMn_{1.5}Ni_{0.5}O_4$ powders obtained at a calcination temperature of $850^{\circ}C$ exhibited the highest initial discharge capacity with good capacity retention and high rate capability.

페라이트를 이용한 $H_2O$ 분해를 통한 수소제조 (Decomposition of $H_2O$ with Ferrite Powders for Hydrogen Generation)

  • 신현창;정광덕;한성환;최승철
    • 한국세라믹학회지
    • /
    • 제37권1호
    • /
    • pp.90-95
    • /
    • 2000
  • The ferrites, CuFe2O4 and SrFe12O129, were applied to decompose H2O for H2 generation. The ferrites prepared by the coprecipitation were reduced by CH4 gas to make the oxygen deficient ferrite. H2O was decomposed to form H2 by the oxygen deficient iron oxide, and the decomposition reactions were accelerated by the addition of divalent metals such as Cu and Sr in the ferrites. The spinel type CuFe2O4 containing a relatively large amount of divalent metals was more effective to H2 generation than magnetoplumbite type SrFe12O19 in H2O decomposition.

  • PDF

Mn-Co-Ni 서미스터의 결정구조 분석 (Crystal structure of Mn-Co-Ni thermistor)

  • 이정일;민성욱;류정호
    • 한국결정성장학회지
    • /
    • 제25권5호
    • /
    • pp.225-229
    • /
    • 2015
  • 본 연구에서는 Mn-Co-Ni 삼성분계로 이루어진 NTC 서미스터의 cubic 스핀넬 결정구조의 변화를 고찰하고자 하였다. Mn, Co, Ni로 이루어진 산화물 원재료 분말들을 혼합하고 건조한 후 In-situ XRD 장비를 이용하여 공기분위기에서 상온부터 $1400^{\circ}C$까지 가열하면서 발생하는 결정구조 변화를 분석하였다. In-situ XRD 분석 결과 cubic 스핀넬 구조는 $900^{\circ}C$부터 존재하는 것을 확인할 수 있었으나, 온도가 $1300^{\circ}C$ 이상으로 올라갔을 때는 스핀넬 결정구조로부터 NiO의 상분리 현상이 발생하기 시작함을 관찰할 수 있었다. 이러한 NiO 상의 분리가 고온에서의 NTC 서미스터의 결정성 감소의 원인임을 알 수 있었으며, 제작된 NTC 서미스터의 표면을 FE-SEM을 이용하여 관찰하여 양품과 불량품의 차이를 분석하였다.

ZnO 바리스터의 미세구조제어와 전기적 특성 (Electrical Characteristics and Microstructure Control of Zinc Oxide Viaristors)

  • 김경남;한상목
    • 한국재료학회지
    • /
    • 제1권2호
    • /
    • pp.65-70
    • /
    • 1991
  • $ZnO-Bi_2O_3-CoO-Sb_2O_3$$ZnO-Bi_2O_3-CoO-Sb_2O_3-Cr_2O_3$계에서 미세구조 변화 및 전기적 특성에 미치는 개재물의 영향을 조사하였다. 소결동안에 ZnO입자 성장은 스피넬 입자들에 의해 제어되었으며, 스피넬 입자들의 양의 증가에 의해 입자성장은 감소하였다. $Cr_2O_3(0.5mol\%)$의 첨가는 비직선성지수에는 큰 영향을 미치지 못하였으며 임계전압(breakdown voltage)을 증가시켰다. 계산에 의해 구한 장벽전압은 $ZnO-Bi_2O_3-CoO-Sb_2O_3$$ZnO-Bi_2O_3-CoO-Sb_2O_3-Cr_2O_3$ 계에서 각각 3.1V와 2.9V이었다.

  • PDF

침전-증발법에 의해 제조된 리튬이온 2차 전지용 LiMn2O4 양극재료의 특성 (Characteristics of LiMn2O4 Cathode Material Prepared by Precipitation-Evaporation Method for Li-ion Secondary Battery)

  • 김국태;윤덕기;심영재
    • 한국재료학회지
    • /
    • 제12권9호
    • /
    • pp.712-717
    • /
    • 2002
  • New wet chemical method so called precipitation-evaporation method was suggested for preparing spinel structure lithium manganese oxide ($LiMn_2$$O_4$) for Li ion secondary battery. Using precipitation-evaporation method, $LiMn_2$$O_4$ cathode materials suitable for Li ion secondary batteries can be synthesized. Single spinel phase $LiMn_2$$O_4$ powder was synthesized at lower temperature compared to that of prepared by solid-state method. $LiMn_2$$O_4$ powder prepared by precipitation-evaporation method showed uniform, small size and well defined crystallinity particles. Li ion secondary battery using $LiMn_2$$O_4$ as cathode materials prepared by precipitation-evaporation method and calcined at $800^{\circ}C$ showed discharge capacity of 106.03mAh/g and discharge capacity of 95.60mAh/g at 10th cycle. Although Li ion secondary battery showed somewhat smaller initial capacity but good cyclic ability. It is suggested that electro-chemical properties can be improved by controlling particle characteristics by particle morphology modification during calcination and optimizing Li ion secondary battery assembly conditions.

Equilibrium and kinetic studies of an electro-assisted lithium recovery system using lithium manganese oxide adsorbent material

  • Lee, Dong-Hee;Ryu, Taegong;Shin, Junho;Kim, Young Ho
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.87-95
    • /
    • 2018
  • This study examined the influence of operating parameters on the electrosorptive recovery system of lithium ions from aqueous solutions using a spinel-type lithium manganese oxide adsorbent electrode and investigated the electrosorption kinetics and isotherms. The results revealed that the electrosorption data of lithium ions from the lithium containing aqueous solution were well-fitted to the Langmuir isotherm at electrical potentials lower than -0.4 V and to the Freundlich isotherm at electrical potentials higher than -0.4 V. This result may due to the formation of a thicker electrical double layer on the surface of the electrode at higher electrical potentials. The results showed that the electrosorption reached equilibrium within 200 min under an electrical potential of -1.0 V, and the pseudo-second-order kinetic model was correlated with the experimental data. Moreover, the adsorption of lithium ions was dependent on pH and temperature, and the results indicate that higher pH values and lower temperatures are more suitable for the electrosorptive adsorption of lithium ions from aqueous solutions. Thermodynamic results showed that the calculated activation energy of $22.61kJ\;mol^{-1}$ during the electrosorption of lithium ions onto the adsorbent electrode was primarily controlled by a physical adsorption process. The recovery of adsorbed lithium ions from the adsorbent electrode reached the desorption equilibrium within 200 min under reverse electrical potential of 3.5 V.

Synthesis and Electrochemical Performance of Reduced Graphene Oxide/AlPO4-coated LiMn1.5Ni0.5O4 for Lithium-ion Batteries

  • Hur, Jaehyun;Kim, Il Tae
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3553-3558
    • /
    • 2014
  • The reduced graphene oxide(rGO)/aluminum phosphate($AlPO_4$)-coated $LiMn_{1.5}Ni_{0.5}O_4$ (LMNO) cathode material has been developed by hydroxide precursor method for LMNO and by a facile solution based process for the coating with GO/$AlPO_4$ on the surface of LMNO, followed by annealing process. The amount of $AlPO_4$ has been varied from 0.5 wt % to 1.0 wt %, while the amount of rGO is maintained at 1.0 wt %. The samples have been characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. The rGO/$AlPO_4$-coated LMNO electrodes exhibit better cyclic performance compared to that of pristine LMNO electrode. Specifically, rGO(1%)/$AlPO_4$(0.5%)- and rGO(1%)/$AlPO_4$(1%)-coated electrodes deliver a discharge capacity of, respectively, $123mAhg^{-1}$ and $122mAhg^{-1}$ at C/6 rate, with a capacity retention of, respectively, 96% and 98% at 100 cycles. Furthermore, the surface-modified LMNO electrodes demonstrate higher-rate capability. The rGO(1%)/$AlPO_4$(0.5%)-coated LMNO electrode shows the highest rate performance demonstrating a capacity retention of 91% at 10 C rate. The enhanced electrochemical performance can be attributed to (1) the suppression of the direct contact of electrode surface with the electrolyte, resulting in side reactions with the electrolyte due to the high cut-off voltage, and (2) smaller surface resistance and charge transfer resistance, which is confirmed by total polarization resistance and electrochemical impedance spectroscopy.