• Title/Summary/Keyword: oxide spinel

Search Result 146, Processing Time 0.025 seconds

Fabrication and Electrochemical Characterization of All Solid State Rechargeable Li-Mn Oxide Batteries (리튬-망간 산화물을 이용한 전고상 이차 전지의 제작 및 전기화학적 특성)

  • Park, Young-Sin;Sin, Jin-Wook;Lee, Byung-Il;Joo, Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.323-327
    • /
    • 1998
  • All solid state lithium based rechargeable batteries were fabricated in a cell structure of Li/PEO-$LiCIO_4$-PC /$LIMn_2O_4$$LIMn_2O_4$ thin films were prepared by RF magnetron sputtering and the spinel structure could be obtained by Rapid Thermal Annealing (RT A) process at the temperature of around 750$750^{\circ}C$ . Room temperature cycling of this cell showed a nearly constant cell potential of 4 V( us. Li) and good reversibility.

  • PDF

Microstructural Investigation of CoCrFeMnNi High Entropy Alloy Oxynitride Films Prepared by Sputtering Using an Air Gas

  • Le, Duc Duy;Hong, Soon-Ku;Ngo, Trong Si;Lee, Jeongkuk;Park, Yun Chang;Hong, Sun Ig;Na, Young-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1285-1292
    • /
    • 2018
  • Microstructural properties of as-grown and annealed CoCrFeMnNi high entropy alloy (HEA) oxynitride thin films were investigated. The CoCrFeMnNi HEA oxynitride thin film was grown by magnetron sputtering method using an air gas, and annealed under the argon plus air flow for 5 h at $800^{\circ}C$. The as-grown film was homogeneous and uniform composed of nanometer-sized crystalline regions mixed with amorphous-like phase. The crystalline phase in the as-grown film was face centered cubic structure with the lattice constant of 0.4242 nm. Significant microstructural changes were observed after the annealing process. First, it was fully recrystallized and grain growth happened. Second, Ni-rich region was observed in nanometer-scale range. Third, phase change happened and it was determined to be $Fe_3O_4$ spinel structure with the lattice constant of 0.8326 nm. Hardness and Young's modulus of the as-grown film were 4.1 and 150.5 GPa, while those were 9.4 and 156.4 GPa for the annealed film, respectively.

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating (표면코팅을 통한 LiMn2O4 양극의 고온성능 개선)

  • Lee, Gil-Won;Lee, Jong-Hwa;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction (산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석)

  • Lee, Jooyoung;Kim, Geulhan;Yang, Juchan;Park, Yoo Sei;Jang, Myeong Je;Choi, Sung Mook
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 2020
  • One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

Structural and optical properties of Ni-substituted spinel $LiMn_2O_4$ thin films (니켈 치환된 스피넬 LiMn2O4 박막의 구조적, 광학적 성질)

  • Lee, Jung-Han;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.527-533
    • /
    • 2006
  • Spinel $LiNi_xMn_{2-x}O_4$ thin films were synthesized up to x = 0.9 by a sol-gel method employing spin-coating. The Ni-substituted films were found to maintain cubic structure at low x but to exhibit tetragonal structure for $x{\geq}0.6$. Such cubic-tetragonal phase transition indicates that $Ni^{3+}(d7)$ ions with low-spin $(t_{2g}^6,e_g^1)$ state occupy the octahedral sites of the compound, thus being subject to the Jahn-Teller distortion. By x-ray photoelectron spectroscopy both $Ni^{2+}$ and $Ni^{3+}$ ions were detected. Optical properties of the $LiNi_xMn_{2-x}O_4$ films were investigated by spectroscopic ellipsometry (SE) in the visible?ultraviolet range. The measured dielectric function spectra by SE mainly consist of broad absorption structures attributed to charge-transfer (CT) transitions, $O^{2-}(2p){\rightarrow}Mn^{4+}(3d)$ for 1.9 $(t_{2g})$ and $2.8{\sim}3.0$ eV $(e_g)$ structures and $O^{2-}(2p){\rightarrow}Mn^{3+}(3d)$ for 2.3 $(t_{2g})$ and $3.4{\sim}3.6$ eV $(e_g)$ structures. Also, sharp absorption structures were observed at about 1.6, 1.7, and 1.9 eV, interpreted as due to d-d crystal-field transitions within the octahedral $Mn^{3+}$ ion. The strengths of these absorption structures are reduced by the Ni substitution. Rapid reduction of the CT transition strength involving the eg states for x = 0.6 is attributed to the reduced wavefunction overlap between the $e_g$ and the $O^{2-}(2p)$ states due to the tetragonal extension of the lattice constant by the Jahn-Teller effect.

Effect of Manganese Vanadate Formed on the Surface of Spinel Lithium Manganese Oxide Cathode on High Temperature Cycle Life Performance

  • Kim, Jun-Il;Park, Sun-Min;Roh, Kwang Chul;Lee, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2573-2576
    • /
    • 2013
  • Rate capability and cyclability of $LiMn_2O_4$ should be improved in order to use it as a cathode material of lithium-ion batteries for hybrid-electric-vehicles (HEV). To enhance the rate capability and cyclability of $LiMn_2O_4$, it was coated with $MnV_2O_6$ by a sol-gel method. A $V_2O_5$ sol was prepared by a melt-quenching method and the $LiMn_2O_4$ coated with the sol was heat-treated to obtain the $MnV_2O_6$ coating layer. Crystal structure and morphology of the samples were examined by X-ray diffraction, SEM and TEM. The electrochemical performances, including cyclability at $60^{\circ}C$, and rate capability of the bare and the coated $LiMn_2O_4$ were measured and compared. Overall, $MnV_2O_6$ coating on $LiMn_2O_4$ improves the cyclability at high temperature and rate capability at room temperature at the cost of discharge capacity. The improvement in cyclability at high temperature and the enhanced rate capability is believed to come from the reduced contact between the electrode, and electrolyte and higher electric conductivity of the coating layer. However, a dramatic decrease in discharge capacity would make it impractical to increase the coating amount above 3 wt %.

Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel

  • Jeong, Jong-Woo;Park, Jong-Hui;Choi, Sung-Woo;Lee, Kyung-Hee;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2288-2292
    • /
    • 2007
  • The catalytic activities of nickel-based catalysts were estimated for oxidizing acetaldehyde of VOCs exhausted from industrial facilities. The catalysts were prepared by sol-gel methods of SiO2 and SiO2-TiO2 as a xerogel followed by impregnating Al2O3 powder with the nickel nitrate precursor. The crystalline structure and catalytic properties for the catalysts were investigated by use of BET surface area, X-ray diffraction (XRD), Xray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR) techniques. These results show that nickel oxide is transformed to NiAl2O4 spinel structure at the calcination temperature of 400 °C in response to the steps with after- and co-impregnation of Al2O3 powder in sol-gel process. The NiAl2O4 could suppress the oxidation reaction of acetaldehyde by catalysts. The NiO is better dispersed on SiO2-TiO2/Al2O3 support than SiO2/Al2O3 and SiO2-TiO2-Al2O3 supports. From the testing results of catalytic activities for oxidation of acetaldehyde, Catalysts showed a big difference in conversion efficiencies with the way of the preparation of catalysts and the loading weight of nickel. The catalyst of 8 wt.% Ni/TiO2-SiO2/Al2O3 showed the best conversion efficiency on acetaldehyde oxidation with 100% conversion efficiency at 350 °C.

Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant

  • Jang, Jum-Suk;Borse, Pramod H.;Lee, Jae-Sung;Jung, Ok-Sang;Cho, Chae-Ryong;Jeong, Euh-Duck;Ha, Myoung-Gyu;Won, Mi-Sook;Kim, Hyun-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1738-1742
    • /
    • 2009
  • Nanocrystalline Zn$Fe_2O_4$ oxide-semiconductor with spinel structure was synthesized by the polymerized complex (PC) method and investigated for its photocatalytic and photoelectric properties. The observation of a highly pure phase and a lower crystallization temperature in Zn$Fe_2O_4$ made by PC method is in total contrast to that was observed in Zn$Fe_2O_4$ prepared by the conventional solid-state reaction (SSR) method. The band gap of the nanocrystalline Zn$Fe_2O_4$ determined by UV-DRS was 1.90 eV (653 nm). The photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method as investigated by the photo-decomposition of isopropyl alcohol (IPA) under visible light (${\geq}$ 420 nm) was much higher than that of the Zn$Fe_2O_4$ prepared by SSR as well as Ti$O_{2-x}N_x$. High photocatalytic activity of Zn$Fe_2O_4$ prepared by PC method was mainly due to its surface area, crystallinity and the dispersity of platinum metal over Zn$Fe_2O_4$.

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.