DOI QR코드

DOI QR Code

Synthesis of CoFe2O4 Nanoparticles as Electrocatalyst for Oxygen Evolution Reaction

산소 발생 반응 용 전기화학촉매로 사용되는 CoFe2O4 나노 입자 합성 및 특성 분석

  • Lee, Jooyoung (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science) ;
  • Kim, Geulhan (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science) ;
  • Yang, Juchan (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science) ;
  • Park, Yoo Sei (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science) ;
  • Jang, Myeong Je (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science) ;
  • Choi, Sung Mook (Materials Center for Energy Department, Surface Technology Division, Korea Institute of Materials Science)
  • 이주영 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 김글한 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 양주찬 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 박유세 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 장명제 (한국기계연구원 부설 재료연구소 표면기술연구본부) ;
  • 최승목 (한국기계연구원 부설 재료연구소 표면기술연구본부)
  • Received : 2020.06.26
  • Accepted : 2020.09.04
  • Published : 2020.11.30

Abstract

One of the main challenges of electrochemical water splitting technology is to develop a high performance, low cost oxygen-evolving electrode capable of substituting a noble metal catalyst, Ir or Ru based catalyst. In this work, CoFe2O4 nanoparticles with sub-44 nmsize of a inverse spinel structure for oxygen evolution reaction (OER) were synthesized by the injection of KNO3 and NaOH solution to a preheated CoSO4 and Fe(NO3)3 solution. The synthesis time of CoFe2O4 nanoparticles was controlled to control particle and crystallite size. When the synthesis time was 6 h, CoFe2O4 nanoparticles had high conductivity and electrochemical surface area. The overpotential at current denstiy of 10 mA/㎠ and Tafel slope of CoFe2O4 (6h) were 395 mV and 52 mV/dec, respectively. In addition, the catalyst showed excellent durability for 18 hours at 10 mA/㎠.

전기 물 분해 기술 중 주요 과제 중 하나는 귀금속의 Ir과 Ru 기반의 촉매를 대체할 수 있는 고성능, 저비용의 산소 발생 반응 (OER) 촉매를 개발하는 것이다. 본 연구에서는 CoSO4와 Fe(NO3)3 수용액을 1차 가열 후 KNO3와 NaOH 추가 반응을 이용한 침전법을 이용하여 OER 촉매로 사용 가능한 역스피넬 구조의 약 44 nm 크기를 갖는 CoFe2O4 나노 입자를 합성하였다. CoFe2O4 나노 입자의 합성 시간을 조절하여 입자 및 결정립 크기를 제어하였다. CoFe2O4 나노 입자의 합성 시간이 6시간일 때, 높은 전도성과 전기 화학 표면적을 가졌다. 이 CoFe2O4 (6 h)는 전류 밀도 10 mA/㎠의 과전압 및 Tafel slope는 각각 395 mV 및 52 mV/dec으로 나타났다. 또한, 이 촉매는 10 mA/㎠에서 18시간 동안 우수한 내구성을 나타냈다.

Keywords

References

  1. D. M. F. Santos, C. A. C. Sequeira and J. L. Figueiredo, 'Hydrogen production by alkaline water electrolysis', Quim. Nova, 36, 1176-1193 (2013). https://doi.org/10.1590/S0100-40422013000800017
  2. M. M. Rashid, M. K. Al Mesfer, H. Naseem and M. Danish, 'Hydrogen Production by Water Electrolysis: A Review of Alkaline Water Electrolysis, PEM Water Electrolysis and High Temperature Water Electrolysis', Int. J. Eng. Technol., 4, 2249-8958 (2015).
  3. E. Rios, J.-L. Gautier, G. Poillerat and P. Chartier, 'Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3xO4system', Electrochim. Acta, 44, 1491-1497 (1998). https://doi.org/10.1016/S0013-4686(98)00272-2
  4. C.-C. Kuo, W.-J. Lan and C.-H. Chen, 'Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metalfree electrocatalysts for sensing hydrogen peroxide', Nanoscale, 6, 334-341 (2014). https://doi.org/10.1039/C3NR03791F
  5. T. Audichon, T. W. Napporn, C. Canaff, C. Morais, C. Comminges and K. B. Kokoh, 'IrO2 Coated on RuO2 as Efficient and Stable Electroactive Nanocatalysts for Electrochemical Water Splitting', J. Phys. Chem. C, 120, 2562-2573 (2016). https://doi.org/10.1021/acs.jpcc.5b11868
  6. H. Osgood, S. V. Devaguptapu, H. Xu, J. Cho and G. Wu, 'Transition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media', Nano Today, 11, 601-625 (2016). https://doi.org/10.1016/j.nantod.2016.09.001
  7. J. Y. C. Chen, J. T. Miller, J. B. Gerken and S. S. Stahl, 'Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: promotion of activity by a redox-inert metal ion', Energy Environ. Sci., 7, 1382-1386 (2014). https://doi.org/10.1039/c3ee43811b
  8. M. O. Tolentino, J. V. Samperio, M. T. Velazquez, J. F. Moreno, L. L. Rojas and R. de G. G. Huerta, 'Bifunctional electrocatalysts for oxygen reduction/evolution reactions derived from NiCoFe LDH materials', J Appl Electrochem, 48, 947-957 (2018). https://doi.org/10.1007/s10800-018-1210-6
  9. J. Bejar, L. A. Contreras, J. L. Garcia, N. Arjona and L. G. Arriaga, 'An advanced three-dimensionally ordered macroporous NiCo2O4 spinel as a bifunctional electrocatalyst for rechargeable Zn-air batteries', J. Mater. Chem. A, 8, 8554-8565 (2020). https://doi.org/10.1039/D0TA00874E
  10. H. Zhu, S. Zhang, Y. X. Huang, L. Wu and S. Sun, 'Monodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) Nanoparticles and Their Electrocatalysis for Oxygen Reduction Reaction', Nano Lett., 13, 2947-2951 (2013). https://doi.org/10.1021/nl401325u
  11. B. Cui, H. Lin, J.B. Li, J. Yang and J. Tao, 'Core-Ring Structured NiCo2O4 Nanoplatelets: Synthesis, Characterizagtion, and Electrocatalytic Applications', Adv. Funct. Mater., 18, 1440-1447 (2008). https://doi.org/10.1002/adfm.200700982
  12. F. Cheng and J. Chen, 'Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts', Chem. Soc. Rev., 41, 2172-2192 (2012). https://doi.org/10.1039/c1cs15228a
  13. C. Si, Y. Zhang, C. Zhang, H. Gao, W. Ma, L. Lv and Z. Zhang, 'Mesoporous nanostructured spinel-type MFe2O4 (M = Co, Mn, Ni) oxides as efficient bi-functional electrocatalysts towards oxygen reduction and oxygen evolution', Electrochim. Acta, 245, 829-838 (2017). https://doi.org/10.1016/j.electacta.2017.06.029
  14. M. Li, Y. Xiong, X. Liu, X. Bo, Y. Zhang, C. Hana and L. Guo, 'Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction', Nanoscale, 7, 8920-8930 (2015). https://doi.org/10.1039/C4NR07243J
  15. H. Zeng, P. M. Rice, S. X. Wang and S. Sun, 'ShapeControlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles', J. am. Chem. Soc., 126, 11458-11459 (2004). https://doi.org/10.1021/ja045911d
  16. R.N. Singh, J.P. Singh, H. N. Cong and P. Chartier, 'Effect of partial substitution of Cr on electrocatalytic properties ofMn2O4 towards O2 evolution in alkaline medium', Int. J. Hydrog. Energy, 31, 1372-1378 (2006). https://doi.org/10.1016/j.ijhydene.2005.11.012
  17. X. Wu, Y. Niu, B. Feng, Y. Yu, X. Huang, C. Zhong, W. Hu and C. M. Li, 'Mesoporous Hollow Nitrogen-Doped Carbon Nanospheres with Embedded MnFe2O4/Fe Hybrid Nanoparticles as Efficient Bifunctional Oxygen Electrocatalysts in Alkaline Media', ACS Appl. Mater. Interfaces, 10, 20440-20447 (2018). https://doi.org/10.1021/acsami.8b04012
  18. Z. Zhang, D. Zhou, S. Zou, X. Bao and X. He, 'One-pot synthesis of MnFe2O4/C by microwave sintering as anefficient bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions', J. Alloys Compd., 786, 565-567 (2019). https://doi.org/10.1016/j.jallcom.2019.02.015
  19. D. M. Fernandes, N. Silva, C. Pereira, C. Moura, J. M. C. S. Magalhaes, B. B. Baeza, I. R. Ramos, A. G. Ruiz, C. D. Matos, C. Freir, 'MnFe2O4@CNT-N as novel electrochemical nanosensor fordetermination of caffeine, acetaminophen and ascorbic acid', Sens. Actuators B Chem., 218, 128-136 (2015). https://doi.org/10.1016/j.snb.2015.05.003
  20. S. Khilari and D. Pradhan, 'MnFe2O4@nitrogen-doped reduced graphene oxide nanohybrid: an efficient bifunctional electrocatalyst for anodic hydrazine oxidation and cathodic oxygen reduction', Catal. Sci. Technol., 7, 5920-5931 (2017). https://doi.org/10.1039/C7CY01844D
  21. W. Bian, Z. Yang, P. Strasser, R. Yang, 'A CoFe2O4/ graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution', J. Power Sources, 250, 196-203 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.024
  22. M. I. Godinho, M. A. Catarino, M.I. da Silva Pereira, M. H. Mendonc and F. M. Costa, 'Effect of the partial replacement of Fe by Ni and/or Mn on theelectrocatalytic activity for oxygen evolution of the CoFe2O4spineloxide electrod', Electrichim. Acta, 47, 4307-4314 (2002). https://doi.org/10.1016/S0013-4686(02)00434-6
  23. W. Yan, X. Cao, J. Tian, C. Jin, K. Ke and R. Yang, 'Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4with enhanced electrocatalytic activities foroxygen reduction and evolution reactions', Carbon, 99, 195-202 (2016). https://doi.org/10.1016/j.carbon.2015.12.011
  24. Xue-Feng L., Lin-Fei G., Jia-Wei W., Jun-Xi W., Pei-Qin L. and Gao-Ren L., 'Bimetal-Organic Framework Derived CoFe2O4/C Porous Hybrid Nanorod Arrays as High-Performance Electrocatalysts for Oxygen Evolution Reaction', Adv. Mater., 29, 1604437 (2017) https://doi.org/10.1002/adma.201604437
  25. W.Yan, W. Bian, C. Jin, J. H. Tian and R. Yang, 'An Efficient Bi-functional Electrocatalyst Based on Strongly CoupledCoFe2O4/Carbon Nanotubes Hybrid for Oxygen Reduction and Oxygen Evolution', Electrochim. Acta, 177, 65-72 (2015). https://doi.org/10.1016/j.electacta.2015.02.044
  26. R.N. Singh, B. Lal and M. Malviya, 'Electrocatalytic activity of electrodeposited composite films of polypyrrole and CoFe2O4nanoparticles towards oxygen reduction reaction', Electrochim. Acta, 49, 4605-4612 (2004). https://doi.org/10.1016/j.electacta.2004.05.015
  27. C. Mahala, M. D. Sharma and M. Basu, '2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst', Electrochim. Acta, 273, 462-473 (2018). https://doi.org/10.1016/j.electacta.2018.04.079
  28. T. Zhang, Z. Li, L. Wang, Z. Zhang, S. Wang, 'Spinel CoFe2O4supported by three dimensional graphene as high-performance bi-functional electrocatalysts for oxygen reduction and evolution reaction', Int. J. Hydrog. Energy, 44, 1610-1619 (2019). https://doi.org/10.1016/j.ijhydene.2018.11.120
  29. G. Zhum X. Li, Y. Liu, W. Zhu and X. She, 'Activating CoFe2O4electrocatalysts by trace Au for enhanced oxygen evolution activity', Appl. Surf. Sci., 478, 206-212 (2019). https://doi.org/10.1016/j.apsusc.2019.01.241
  30. X. Zhao, Y. Fu, J. Wang, Y. Xu, J. H. Tian and R. Yang, 'Ni-doped CoFe2O4Hollow Nanospheres as Efficient Bifunctional Catalysts', Electrochim. Acta, 201, 172-178 (2016). https://doi.org/10.1016/j.electacta.2016.04.001
  31. K. M. Naik and S. Sampath, 'Two-step oxygen reduction on spinel NiFe2O4catalyst: Rechargeable,aqueous solution- and gel-based, Zn-air batteries', Electrochim. Acta, 292, 268-275 (2018). https://doi.org/10.1016/j.electacta.2018.08.138
  32. W. Hu, Y. Wang, X. Hu, Y. Zhou and S. Chen, 'Threedimensional ordered microporous IrO2 as electrocatalyst for oxygen evolution reaction in acidic medium', J. Mater. Chem., 22, 6010-6016 (2012). https://doi.org/10.1039/c2jm16506f
  33. S. Du, Z. Ren, J. Zhang, J. Wu, W. Xi, J. Zhub and H. Fu, 'Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting', Chem. Commun., 51, 8066-8069 (2015). https://doi.org/10.1039/C5CC01080B
  34. N. B. Halck, V. Petrykin, P. Krtil and J. Rossmeis, 'Beyond the volcano limitations in electrocatalysis - oxygen evolution reaction', Phys. Chem. Chem. Phys., 16, 13682-13688 (2014). https://doi.org/10.1039/C4CP00571F
  35. S. T. Hunt, M. Milina, Z. Wang and Y. R. Leshkov, 'Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles', Energy Environ. Sci., 9, 3290-3301 (2016). https://doi.org/10.1039/C6EE01929C
  36. R. T. Olsson, M.A. S. Azizi Samir, G. S. Alvarez, L. Belova and V. Strom, 'Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose mano fibrils as templates', Nat. Nanotechnol., 5, 584-588 (2010) https://doi.org/10.1038/nnano.2010.155
  37. R. Yang, S. He, J. Yi and Q. Hu, 'Nano-scale pore structure and fractal dimension of organic-rich WufengLongmaxi shale from Jiaoshiba area, Sichuan Basin:Investigations using FE-SEM, gas adsorption and helium pycnometry', Mar Pet Geol, 70, 27-45 (2016). https://doi.org/10.1016/j.marpetgeo.2015.11.019
  38. M. Peumans, B. V. Meerbeek, Y. Yoshida, P. Lambrechts and G. Vanherle, 'Porcelain veneers bonded to tooth structure: an ultra-morphological FE-SEM examination of the adhesive interface', Dent Mater, 15, 105-119 (1999). https://doi.org/10.1016/S0109-5641(99)00020-2
  39. M. Morcrette, Y. Chabre, G. Vaughan, G. Amatucci, J. B. Lerche, S. Patoux, C. Masquelier and J. M. Tarascon, 'In sity X-ray diffraction techniques as a powerful tool to study battery electrode materials', Electrochim. Acta, 47, 3137-3149 (2002). https://doi.org/10.1016/S0013-4686(02)00233-5
  40. M. R. Fitzsimmons, J. A. Eastman, M. M. Stach and G. Wallner, 'Structural characterization of nanometer-sized crystalline Pd by x-ray-diffraction techniques', Phys. Rev. B, 44, 2452-2460 (1991) https://doi.org/10.1103/PhysRevB.44.2452
  41. L. Wu, L. Shi, S. Zhou, J. Zhao, X. Miao and J. Guo, Direct Growth of CoFe2 Alloy Strongly Coupling and Oxygen-vacancy-rich CoFe2O4 Porous Hollow Nanofibers: an Efficient Electrocatalyst for Oxygen Evolution Reaction', Energy Thchnol. 6, 2350−2357 (2018).
  42. C. Zhang, Sa. Bhoyate, C. Zhao, P. K. Kahol, N. Kostoglou, C. Mitterer , S. J. Hinder, M. A. Baker, G. Constantinides, K. Polychronopoulou, C. Rebholz and R. K. Gupta, 'Electrodeposited Nanostructured CoFe2O4 for Overall Water Splitting and Supercapacitor Applications', Catalysts, 9, 176 (2019). https://doi.org/10.3390/catal9020176
  43. K. Liu, C. Zhang, Y. Sun, G. Zhang, X. Shen, F. Zou, H. Zhang, Z. Wu, E. C. Wegener, C. J. Taubert, J. T. Miller, Z. Peng, and Y. Zhu, 'High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction', ACS Nano, 12, 158−167 (2018). https://doi.org/10.1021/acsnano.7b04646
  44. C. Mahala, M. D. Sharma, and M. Basu, '2D Nanostructures of CoFe2O4 and NiFe2O4: Efficient Oxygen Evolution Catalyst', Electrochimi. Acta, 273, 462−473 (2018). https://doi.org/10.1016/j.electacta.2018.04.079
  45. J. S. Sagu, D. Mehta, and K. G. U. Wijayantha, 'Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media', Electrochem. Commun., 87, 1−4 (2018). https://doi.org/10.1016/j.elecom.2017.12.017
  46. S. Sun, H. Li and Z. J. Xu, 'Impact of Surface Area in Evaluation of Catalyst Activity', Joule, 2, 1019-1027 (2018). https://doi.org/10.1016/j.joule.2018.05.005
  47. T. Shinagawa, Angel T. G. Esparza and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion', Sci. Rep., 5, 13801 (2015). https://doi.org/10.1038/srep13801
  48. N. D. Leonard, S. Wagner, F. Luo, J. Steinberg, Wen Ju, N. Weidler, H. Wang, U. I. Kramm and P. Strasser, 'Deconvolution of Utilization, Site Density, and Turnover Frequency of Fe-Nitrogen-Carbon Oxygen Reduction Reaction Catalysts Prepared with Secondary N-Precursors, ACS Catal., 8, 1640-1647 (2018). https://doi.org/10.1021/acscatal.7b02897
  49. R. Beugre, A. Dorval, L. L. Lavallee, M. Jafari, J. C. Byers, 'Local electrochemistry of nickel (oxy)hydroxide material gradients prepared using bipolar electrodeposition', Electrochim. Acta, 319, 331-338 (2019). https://doi.org/10.1016/j.electacta.2019.06.143