• Title/Summary/Keyword: oxide salt

Search Result 295, Processing Time 0.029 seconds

A Study on the Reaction Characteristics of Rare Earth Oxides with Lithium Oxide in LiCl Molten Salt (LiCl 용융염 중에서 희토류 산화물과 산화리튬의 반응특성에 관한 연구)

  • 오승철;박성빈;김상수;도재범;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.447-452
    • /
    • 2003
  • We had clarified the reactions of the rare earth oxides($RE_2O_3$) with lithium oxide produced in lithium reduction process of oxide fuels. Oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium reacted with lithium oxide in the higher concentration than the respective certain critical concentration of lithium oxide and formed complex oxides($LiREO_2$). The critical lithium oxide concentrations for the formation of complex oxides of scandium, yttrium, praseodymium, neodymium, samarium, europium, gadolinium, ytterbium and lutetium oxide were respectively 0.1 wt%, 1.9 wt%, 5.3 wt%, 5.0 wt%, 3.0 wt%, 3.9 wt% 2.9 wt%, 2.6 wt% and 0.3 wt%. Cerium and lanthanum oxide did not react with lithium oxide. These complex oxides obtained from experiments have limited solubility in lithium chloride at $650^{\circ}C$.

  • PDF

Lithium ion Transport Characteristics of Gel-Type Polymer Electrolytes Containing Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (리튬 p-[메톡시 올리고(에틸렌옥시)]벤젠설폰산염으로 제조된 젤형 고분자 전해질의 리튬 이온 운반 특성)

  • 허윤정;강영구;한규승;이창진
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.385-391
    • /
    • 2003
  • Lithium p-[Methoxyoligo(ethyleneoxy)] benzenesulfonates (LiEOnBS) with different repeating unit of ethylene oxide were synthesized and were used for preparing gel-polymer electrolytes. The conductivities and lithium ion transference number were measured as a function of Li-salt concentration and repeating unit of ethylene oxide of the LiEOnBS. The maximum conductivity of the resulting gel-polymer electrolyte was found to be 4.89${\times}$10$\^$-4/ S/cm (LiEO7.3BS, 0.5 M) at 30$^{\circ}C$. The lithium ion transference number (t$\sub$Li$\sub$+//) measurement were performed by means of the combination do polarization and ac impedance methods in gel-polymer electrolytes. Lithium ion transference number was measured to be in the range of 0.75∼0.92 for the LiEOnBS containing gel-polymer electrolytes. The maximum t$\sub$Li$\sub$+// was obtained to be 0.92 for the 0.1 M LiEOnBS containing polymer electrolytes. The synthesized LiEOnBS showed single ion transport like characteristics when n was large than 3.

The Conductivity Properties of Poly(ethylene oxide) Polymer Electrolyte as a Function of Temperature, Kinds of Lithium Salt and Plasticizer Addition (Poly(ethylene oxide) 고분자 전해질의 온도, Li 염의 종류 및 가소제 첨가에 따른 전도도 특성)

  • Kim, J.U.;Jin, B.S.;Moon, S.I.;Gu, H.B.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1229-1232
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes the effects of lithium salts, plasticizer addition and temperature dependence of conductivity of PEO electrolytes. Polyethylene oxide(PEO) based polymer electrolyte films were prepared by solution casting an acetonitrile solution of preweighed PEO and Li salt. After solvent evaporation, the electrolyte films were vacuum-dried at $60^{\circ}C$ for 48h, the thickness of the films were $90{\sim}110{\mu}m$. The conductivity properties of prepared PEO electrolytes are summarized as follows. PEO electrolyte complexed with $LiClO_4$ shows the better conductivity of the others. $PEO-LiClO_4$ electrolyte when $EO/Li^+$ ratio is 8, showed the best conductivity. Optimum operating temperature of PEO electrolyte is $60^{\circ}C$. By adding propylene carbonate and ethylene carbonate to $PEO-LiClO_4$ electrolyte, its conductivity was higher than $PEO-LiClO_4$ without those. Also $PEO_8LiClO_4$ electrolyte remains static up to 4.5V vs. $Li/Li^+$.

  • PDF

Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt (LiCl-Li2O 용융염에서 타이타늄 산화물의 전해환원 특성)

  • Lee, Jeong;Kim, Sung-Wook;Lee, Sang-Kwon;Hur, Jin-Mok;Choi, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.156-160
    • /
    • 2015
  • Experiments using a metal oxide of a non-nuclear material as a fuel are very useful to develop a new electrolytic reducer for pyroprocessing. In this study, the titanium oxides (TiO and $TiO_2$) were selected and investigated as the non-nuclear fuel for the electrolytic reduction. The immersion tests of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt revealed that they have solubility of 156 and 2100 ppm, respectively. Then, the Ti metals were successfully produced after the separate electrolytic reduction of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt. However, Ti was detected on the platinum anode used for the electrolytic reduction of $TiO_2$ unlike TiO due to the dissolution of $TiO_2$ into the salt.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

Single Particle Characterization of Aerosol Particles Collected at Jeju Island, Korea, During 'ACE-Asia' Intensive Observation Period, Using Low-Z Particle Electron Probe X-ray Microanalysis (Low-Z Particle Electron Probe X-ray Microanalysis법을 이용한 2001년 ACE-Asia 집중 측정 기간 중 제주도 고산에서의 입자상 물질의 특성분석)

  • An Yong Hoon;Kim HyeKyeong;Ro Chul-Un
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.811-821
    • /
    • 2004
  • Low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) was applied to characterize aerosol particles collected at Gosan in Jeju island during an IOP (intensive observation period) for an international ACE-Asia project in April, 2001. Various types of atmospheric particles such as organics, carbon-rich, aluminosilicates, silicon oxide, sodium nitrate, sodium chloride, and ammonium sulfate were observed. The reacted sea salt particles such as sodium nitrate were the most abundantly encountered, but original sea salt particles were rarely observed. Since the Low-Z particle EPMA can provide quantitative information on the chemical composition of aerosol particles, many different particle types on the basis of their chemical compositions were observed and identified. In this study, it is demonstrated that the Low-Z particle EPMA can provide detailed information on the chemical compositions for the aerosol particles collected for six consecutive days in April, 2001, at Gosan super-site.

Contamination Particle and Cracking Behavior of the Anodic Oxidation in Sulfuric Acid Containing Cerium Salt (세륨염을 첨가한 황산법 양극산화피막의 오염입자 및 열크랙 거동)

  • So, Jongho;Yun, Ju-Young;Shin, Jae-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.11-15
    • /
    • 2018
  • The parts of equipment for semiconductor are protected by anodic aluminum oxide film to prevent corrosion. This study investigated contamination particle and cracking behavior of anodic oxidation in sulfuric acid containing cerium salt. The insulating properties of the sample were evaluated by measuring the breakdown voltage. It was confirmed that the breakdown voltage was about 50% higher when the cerium salt was added, and that the breakdown voltage after the heat treatment was 55% and 35% higher at $300^{\circ}C$ and $400^{\circ}C$, respectively. After heating at $300^{\circ}C$ and $400^{\circ}C$, cracks were observed in non cerium and cerium 3mM, and more cracks occur at $400^{\circ}C$ than at $30^{\circ}C$. The amount of contamination particles generated in the plasma is about 45% less than that of non-cerium specimens.

Dielectric and Piezoelectric Properties on the Piezoceramics PZT by Molten Salt Synthesis (Flux법에 의해 제조된 압전 세라믹(PZT)의 유전 및 압전특성)

  • Lee, S.H.;Park, J.B.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.721-723
    • /
    • 1992
  • The electrical resistivity and piezoelectric properties have been studied for Lead Zirconate-Titanate(PZT) with $Nb_2O_5$ dopant, fabricated from conventional mixed-oxide powders and molten salt synthesis. The resistivity and electromechanical coupling factor(Kp) were increased with increasing Nb contents. The reason for increasing of the electrical resistivity below the Curie Temperature(Tc), It is believed that the p-type electrical conduction in PZT is caused by the lead vacancies. The electromechanical coupling factor(Kr) and piezoelectric constant $d_{33}$ were improved by Nb additives. This behavior can be explained as a compensation effect and $Nb^{5+}$ can serve as a donar and contribute electrons to the conduction process. As a result, the optimized $Nb_2O_5$ dopants on the PZT specimens were 0.75 wt%.

  • PDF

Combustibility Improving Effect of Organometallic Salt for Fuel Oil (燃料油 燃燒에 미치는 有機金屬鹽의 助燃效果)

  • Yong Shik Kang
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.330-347
    • /
    • 1971
  • Catalytic effects of metallic salts on the combustion of diesel fuel oil have been studied. In the case of organometallic salt, the active species are the metallic oxides resulted from combustion of the salts. The oxides act only on the residual solid carbon produced from the fuel oil combustion. The catalytic activity can be explained with the semiconductor theory just as in the case of the gas phase reaction. The chemical rate constant of the combustion of carbon, the soot from diesel fuel oil, is found to be $k_c=1.1{\times}10^4\;exp$ (-16,600/T) below $800^{\circ}K$. By addition of metallic oxides, the rate constant increases remarkably. This work has substantiated the belief that the effect of the metallic salts on the fuel oil combustion can conveniently be studied by checking directly the effect of the corresponding metallic oxide on the soot carbon.

  • PDF

Plasma Corrosion and Breakdown Voltage Behavior of Ce Ion Added Sulfuric Acid Anodizing According to Electrolyte Temperature (Ce ion이 첨가된 황산 아노다이징의 온도 변화에 따른 내플라즈마 특성)

  • So, Jongho;Yun, Ju-Young;Shin, Jae-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.37-41
    • /
    • 2021
  • We report on the formation of anodic aluminum oxide (AAO) film using sulfuric acid containing cerium salt. When the temperature of the sulfuric acid containing cerium salt changes from 5 ℃ to 20 ℃, the current density and the thickness growth rate increase. The surface morphology of the AAO film change according to the temperature of the electrolytes. And that affected the breakdown voltage and the plasma etch rate. The breakdown voltage per unit thickness was the highest at 15 ℃, and the plasma etch rate was the lowest at 10 ℃ at 2.80 ㎛/h.