DOI QR코드

DOI QR Code

Electrolytic Reduction Characteristics of Titanium Oxides in a LiCl-Li2O Molten Salt

LiCl-Li2O 용융염에서 타이타늄 산화물의 전해환원 특성

  • Received : 2015.07.29
  • Accepted : 2015.09.01
  • Published : 2015.11.30

Abstract

Experiments using a metal oxide of a non-nuclear material as a fuel are very useful to develop a new electrolytic reducer for pyroprocessing. In this study, the titanium oxides (TiO and $TiO_2$) were selected and investigated as the non-nuclear fuel for the electrolytic reduction. The immersion tests of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt revealed that they have solubility of 156 and 2100 ppm, respectively. Then, the Ti metals were successfully produced after the separate electrolytic reduction of TiO and $TiO_2$ in a molten 1.0 wt.% $Li_2O$-LiCl salt. However, Ti was detected on the platinum anode used for the electrolytic reduction of $TiO_2$ unlike TiO due to the dissolution of $TiO_2$ into the salt.

파이로프로세싱 전해환원은 사용후핵연료의 재활용을 위해 우라늄산화물을 금속으로 전환하는 공정으로 핵물질을 사용하기 이전에 대체 금속산화물을 이용한 실험을 통해 환원 장치의 성능을 평가하고 개선한다. 본 연구에서는 전해환원 장치 개발을 위한 대체 금속산화물로 타이타늄 산화물(TiO와 $TiO_2$)을 선정하고 $650^{\circ}C$$Li_2O$-LiCl 용융염에서의 용해도 및 전해환원 특성을 평가하였다. 1.0 wt.% $Li_2O$-LiCl 용융염에서 TiO와 $TiO_2$의 침지 실험을 통해 두 산화물 모두 염에 일부 용해됨을 확인하였는데, $TiO_2$(2100 ppm)가 TiO(156 ppm)에 비해 더 높은 용해도를 보였다. 1.0 wt.% $Li_2O$-LiCl 용융염에서 TiO와 $TiO_2$의 전해환원을 각각 수행하여 Ti 금속을 성공적으로 제조하였다. 그러나 염 내 용해도가 낮은 TiO는 환원에 사용된 백금 양극 표면에서 Ti이 검출되지 않은 반면 $TiO_2$의 백금 표면에서는 Ti이 검출되었다.

Keywords

References

  1. T. Nohira, K. Yasuda and Y. Ito, 'Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon' Nature Materials, 2, 397 (2003). https://doi.org/10.1038/nmat900
  2. K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_2$ in molten $CaCl_2$ for the production of solar grade silicon' Electrochim. Acta, 53, 106 (2007). https://doi.org/10.1016/j.electacta.2007.01.024
  3. S. M. Jeong, J. Y. Jung, C. S. Seo and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_2O_5$ for the preparation of metallic tantalum in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 440, 210 (2007). https://doi.org/10.1016/j.jallcom.2006.05.139
  4. X. Y. Yan and D. J. Fray, 'Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$-NaCl Melt' Metall. Mater. Trans. B, 33B, 685 (2002).
  5. S. M. Jeong, H. Y. Yoo, J.-M. Hur and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a LiCl-$Li_2O$ molten salt' J. Alloy. Compd., 452, 27 (2008). https://doi.org/10.1016/j.jallcom.2007.02.057
  6. S. I. Wang, G. M. Haarberg and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_2O_3$ in molten $CaCl_2$-KF' J. Iron Steel Res. Int., 15, 48 (2008). https://doi.org/10.1016/S1006-706X(08)60265-4
  7. D. Wang, G. Qiu, X. Jin, X. Hu and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide' Angew. Chem. Int. Edit., 45, 2384 (2006). https://doi.org/10.1002/anie.200503571
  8. Q. Xu, L.-Q. Deng, Y. Wu and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_2O_5$ in a eutectic $CaCl_2$-NaCl melt at 1073K' J. Alloy. Compd., 396, 288 (2005). https://doi.org/10.1016/j.jallcom.2005.01.002
  9. G. Z. Chen, E. Gordo and D. J. Fray, 'Direct electrolytic preparation of chromium powder' Metall. Mater. Trans. B, 35B, 223 (2004).
  10. E. Gordo, G. Z. Chen and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts' Electrochim. Acta, 49, 2195 (2004). https://doi.org/10.1016/j.electacta.2003.12.045
  11. B. Claux, J. Serp and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal' Electrochim. Acta, 56, 2771 (2011). https://doi.org/10.1016/j.electacta.2010.12.040
  12. G. Z. Chen, D. J. Fray and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride' Nature, 407, 361 (2000). https://doi.org/10.1038/35030069
  13. C. Schwandt and D. J. Fray, 'Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride' Electrochim. Acta, 51, 66 (2005). https://doi.org/10.1016/j.electacta.2005.03.048
  14. I. Park, T. Abiko and T. H. Okabe, 'Production of titanium powder directly from $TiO_2$ in $CaCl_2$ through an electronically mediated reaction (EMR)' J. Phys. Chem. Solids., 66, 410 (2005). https://doi.org/10.1016/j.jpcs.2004.06.052
  15. K. Jiang, X. Hu, H. Sun, D. Wang, X. Jing, Y. Ren and G. Z. Chen, 'Electrochemical synthesis of Li$TiO_2$ and $LiTi_2O_4$ in molten LiCl' Chem. Mater., 16, 4324 (2004). https://doi.org/10.1021/cm0494148
  16. J.-M. Hur, S.-C. Lee, S.-M. Jeong and C.-S. Seo, 'Electrochemical reduction of $TiO_2$ in molten LiCl-$Li_2O$' Chem. Lett., 36, 1028 (2007). https://doi.org/10.1246/cl.2007.1028
  17. H.-S. Shin, J.-M. Hur, S. M. Jeong and K. Y. Jung, 'Direct electrochemical reduction of titanium dioxide in molten lithium chloride' J. Ind. Eng. Chem., 18, 438 (2012). https://doi.org/10.1016/j.jiec.2011.11.111
  18. K.-C. Song, H. Lee, J.-M. Hur, J.-K. Kim, D.-H. Ahn and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea' Nucl. Eng. Technol., 42, 131 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  19. S. D. Herrmann and S. X. Li, 'Separation and recovery of uranium metal from spent light water reactor fuel via electrolytic reduction and electrorefining' Nucl. Technol., 171, 247 (2010). https://doi.org/10.13182/NT171-247
  20. K. M. Goff, J. C. Wass, K. C. Marsden and G. M. Teske, 'Electrochemical processing of used nuclear fuel' Nucl. Eng. Technol., 43, 335 (2011). https://doi.org/10.5516/NET.2011.43.4.335
  21. E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow and L. Redey, 'Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes' Nucl. Technol., 136, 342 (2001). https://doi.org/10.13182/NT136-342
  22. E.-Y. Choi, J. W. Lee, J. J. Park, J.-M. Hur, J.-K. Kim, K. Y. Jung and S. M. Jeong, 'Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt' Chem. Eng. J., 207, 514 (2012).
  23. E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J. W. Lee, S. M. Jeong and J.-M. Hur, 'Effect of the $UO_2$ form on the electrochemical reduction rate in a LiCl-$Li_2O$ molten salt' J. Nucl. Mater., 437, 178 (2013). https://doi.org/10.1016/j.jnucmat.2013.01.306
  24. E.-Y. Choi, C. Y. Won, J.-S. Cha, W. Park, H.-S. Im, S. S. Hong and J.-M. Hur, 'Electrochemical reduction of $UO_2$ in LiCl-$Li_2O$ molten salt using porous and nonporous anode shrouds' J. Nucl. Mater., 444, 261 (2014). https://doi.org/10.1016/j.jnucmat.2013.09.061