DOI QR코드

DOI QR Code

Synthesis and Physicochemical Properties of Branched Solid Polymer Electrolytes Containing Ethylene Carbonate Group

에틸렌 카보네이트기를 함유하는 가지형 고체 고분자전해질의 합성 및 물리화학적 특성

  • Kim, Doo-Hwan (Department of Engineering Chemistry, Chungbuk National University) ;
  • Ryu, Sang-Woog (Department of Engineering Chemistry, Chungbuk National University)
  • Received : 2015.07.26
  • Accepted : 2015.10.13
  • Published : 2015.11.30

Abstract

In this study polymer electrolytes containing ethylene carbonate group which have a high dielectric constant and poly(ethylene glycol) as branches were prepared by the Williamson reaction between poly(ethylene glycol) methyl ether and block copolymers composed of glycerol-1,2-carbonate and 4-chloromethyl styrene. Interestingly, the highest ionic conductivity of $1.75{\times}10^{-5}S\;cm^{-1}$ was observed from the polymer electrolyte having 7 mol% of ethylene carbonate and the [EO]:[Li] ratio of 32:1. Moreover, it was found that the electrochemical stability of polymer electrolyte was achieved up to 5.5 V because of the presence of ethylene carbonate.

본 연구에서는 glycerol-1,2-carbonate와 4-chloromethyl styrene을 함유하는 공중합체를 합성하고, poly(ethylene glycol) methyl ether 와의 Williamson 반응을 이용하여 poly(ethylene glycol)이 가지로 도입됨과 동시에 높은 유전상수의 에틸렌 카보네이트를 함유하는 고분자전해질을 제조하였다. 흥미롭게도 전해질의 상온 이온전도도는 7 mol%의 에틸렌 카보네이트를 포함하는 가지형 고분자에서 $1.75{\times}10^{-5}S\;cm^{-1}$으로 가장 높게 얻어졌고, 이때 [EO]:[Li] 비율의 최적화는 32:1이었다. 또한 에틸렌 카보네이트기의 존재에 의해 고분자전해질의 전기화학적 안정성을 5.5 V까지 확보할 수 있었다.

Keywords

References

  1. K. Xu, 'Nonaqueous liquid electrolytes for lithium-based rechargeable batteries' Chem. Rev., 104, 4303 (2004). https://doi.org/10.1021/cr030203g
  2. S. Tobishima, M. Arakawa, T. Hirai, and J. Yamaki, "Ethylene carbonate/ether solvents for electrolytes in lithium secondary batteries" J. Power Sources, 20, 293 (1987). https://doi.org/10.1016/0378-7753(87)80126-X
  3. M. Wakihara, and O. Yamamoto, Lithium Ion Batteries Fundamentals and Performance, Kodansa, Tokyo (1998).
  4. H. Tachikawa, and S. Abe, "Solvent Stripping Dynamics of Lithium ion solvated by ethylene carbonates: A direct ab-initio molecular (AIMD) Study" Electrochimica Acta, 120, 57 (2014). https://doi.org/10.1016/j.electacta.2013.12.054
  5. J. Goodenough, and Y. Kim, "Challenges for rechargeable Li batteries" Chem. Mater., 22, 587 (2010). https://doi.org/10.1021/cm901452z
  6. G.-A. Nazri, and G. Pistoia, 'Lithium Batteries Science and Technology' 574, Kluwer Academic Publishers, New York (2004).
  7. M. Yosho, R. Brodd, and A. Kozawa, 'Lithium-ion Batteries' 413, Springer, New York (2009).
  8. S. Zhang, L. Yang, and Q. Liu, 'Single-ion conductivity and carrier generation of polyelectrolytes' Solid State Ionics, 76, 121 (1995). https://doi.org/10.1016/0167-2738(94)00224-G
  9. F. Dias, L. Plomp, and J. Veldhuis, 'Trends in polymer electrolytes for secondary lithium batteries' J. Power Sources, 88, 169 (2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  10. Y. Ikeda, Y. Wada, Y. Matoba, S. Murakami, and S. Kohjiya, 'Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for a polymer solid electrolyte' Electrochimica Acta, 45, 1167 (2000). https://doi.org/10.1016/S0013-4686(99)00377-1
  11. P. Jannasch, 'Ion conducting electrolytes based on aggregating comblike poly(propylene oxide)' Polymer, 42, 8629 (2001). https://doi.org/10.1016/S0032-3861(01)00373-1
  12. E. Gomez, A. Panday, E. Feng, V. Chen, G. Stone, A. Minor, C. Kisielowski, K. Downing, O. Borodin, G. Smith, and N. Balsara, 'Effect of ion distribution on conductivity of block copolymer electrolytes' Nano Letters, 9, 1212(2009). https://doi.org/10.1021/nl900091n
  13. W. Young, and T. Epps, III, 'Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations' Macromolecules, 45, 4689(2012). https://doi.org/10.1021/ma300362f
  14. H. Katz, "Preparation of soluble poly(carbonyldioxyglyceryl methacrylate)" Macromolecules, 20, 2026 (1987). https://doi.org/10.1021/ma00174a057
  15. N. Kihara, and T. Endo, "Synthesis and reaction of polymethacrylate bearing cyclic carbonate moieties in the side chain" Makromol. Chem., 193, 1481 (1992). https://doi.org/10.1002/macp.1992.021930624
  16. T. Miyata, K. Matsumoto, T. Endo, S. Yonemori, and S. Watanabe, "Synthesis and radical polymerization of styrene-based monomer having a five-membered cyclic carbonate structure" J. Polym. Sci. A: Polym. Chem., 50, 3046 (2012). https://doi.org/10.1002/pola.26090
  17. T. Nishikubo, A. Kameyama, and M. Sasano, "Synthesis of functional polymers bearing cyclic carbonate groups from (2-oxo-1,3 -dioxolan-4-yl)methyl vinyl ether" J. Polym. Sci. A: Polym. Chem., 32, 301 (1994). https://doi.org/10.1002/pola.1994.080320211
  18. D.H. Kim, and S.W. Ryu, 'Synthesis and ionic conductivity of polystyrene derivative containing cyclic carbonate' J. Korean Electrochem. Soc., 18, 1 (2015). https://doi.org/10.5229/JKES.2015.18.1.1
  19. H. Hsieh, and R. Quirk, 'Anionic Polymerization, Principle and Practical Applications' 379, Marcel Dekker, New York (1996).
  20. J. MacCallum, and C. Vincent, 'Polymer Electrolyte Reviews-1' 69, Elsevier Applied Science, New York (1987).

Cited by

  1. Electrochemical Properties of Ionic Liquid Composite Poly(ethylene oxide)(PEO) Solid Polymer Electrolyte vol.19, pp.3, 2016, https://doi.org/10.5229/JKES.2016.19.3.101