• Title/Summary/Keyword: oxide nanoparticles

검색결과 626건 처리시간 0.022초

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • 한국재료학회지
    • /
    • 제31권8호
    • /
    • pp.427-432
    • /
    • 2021
  • This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

Post Annealing Effects on Iron Oxide Nanoparticles Synthesized by Novel Hydrothermal Process

  • Kim, Ki-Chul;Kim, Young-Sung
    • Journal of Magnetics
    • /
    • 제15권4호
    • /
    • pp.179-184
    • /
    • 2010
  • We have investigated the effects of post annealing on iron oxide nanoparticles synthesized by the novel hydrothermal synthesis method with the $FeSO_4{\cdot}7H_2O$. To investigate the post annealing effect, the as-synthesized iron oxide nanoparticles were annealed at different temperatures in a vacuum chamber. The morphological, structural and magnetic properties of the iron oxide nanoparticles were investigated with high resolution X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), Mossbauer spectroscopy, and vibrating sample magnetometer analysis. According to the XRD and HRTEM analysis results, as-synthesized iron oxide nanoparticles were only magnetite ($Fe_3O_4$) phase with face-centered cubic structure but post annealed iron oxide nanoparticles at $700^{\circ}C$ were mainly magnetite phase with trivial maghemite ($\gamma-Fe_2O_3$) phase which was induced in the post annealing treatment. The crystallinity of the iron oxide nanoparticles is enhanced by the post annealing treatment. The particle size of the as-synthesized iron oxide nanoparticles was about 5 nm and the particle shape was almost spherical. But the particle size of the post annealed iron oxide nanoparticles at $700^{\circ}C$ was around 25 nm and the particle shape was spherical and irregular. The as-synthesized iron oxide nanoparticles showed superparamagnetic behavior, but post annealed iron oxide nanoparticles at $700^{\circ}C$ did not show superparamagnetic behavior due to the increase of particle size by post annealing treatment. The saturation of magnetization of the as-synthesized nanoparticles, post annealed nanoparticles at $500^{\circ}C$, and post annealed nanoparticles at $700^{\circ}C$ was found to be 3.7 emu/g, 6.1 emu/g, and 7.5 emu/g, respectively. The much smaller saturation magnetization value than one of bulk magnetite can be attributed to spin disorder and/or spin canting, spin pinning at the nanoparticle surface.

In Vitro Cytotoxicity of Zinc Oxide Nanoparticles in Cultured Statens Seruminstitut Rabbit Cornea Cells

  • Lee, Handule;Park, Kwangsik
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.287-294
    • /
    • 2019
  • The possibility of eye exposure for workers participating in manufacturing of nanoparticles or consumers using products containing nanoparticles has been reported, but toxicity studies on the eye are scarce. In this study, cytotoxicity of five nanoparticles including silver, ceria, silica, titanium and zinc were tested using Statens Seruminstitut Rabbit Cornea (SIRC) cells. When cells were treated with nanoparticles with concentrations of $1-100{\mu}g/mL$ for 24 hr, zinc oxide nanoparticles showed higher toxicity to cornea cells. $LC_{50}$ of zinc oxide nanoparticles was less than $25{\mu}g/mL$ but those of other nanoparticles could not be calculated in this test, which means more than $100{\mu}g/mL$. Generation of reactive oxygen species was observed, and expression of apoptosis related biomarkers including Bax and Bcl-2 were changed after treatment of zinc oxide nanoparticles, while no other significant toxicity-related changes were observed in cornea cells treated with Ag, $CeO_2$, $SiO_2$ and $TiO_2$ nanoparticles.

티타늄나노입자의 랫드 5일 반복 경구투여 후 배설, 조직분포 및 독성에 관한 평가연구 (Excretion, Tissue Distribution and Toxicities of Titanium Oxide Nanoparticles in Rats after Oral Administration over Five Consecutive Days)

  • 김혜진;박광식
    • 한국환경보건학회지
    • /
    • 제40권4호
    • /
    • pp.294-303
    • /
    • 2014
  • Objectives: Excretion and tissue distribution of titanium oxide nanoparticles were evaluated in rats after oral administration. The relation between toxicity and systemic concentration of nanoparaticles was investigated. Methods: Rats were orally treated with titanium oxide nanoparticles (10, 100 mg/kg) for five consecutive days. General toxicity, blood chemistry, and serum biochemical analysis were analyzed. Titanium concentration in liver, kidney, lung, urine and feces were measured and histopathology was performed in these organs. Results: Induction of toxicological parameters was not observed and titanium nanoparticles were excreted via feces. Conclusion: Absorption of titanium oxide nanoparticles via the gastrointestinal tract after oral administration was very poor and systemic concentration of titanium oxide nanoparticles was not elevated. Titanium oxide nanoparticles did not cause toxicities in rats after oral administration.

Sn 산화물 나노입자 형성에 미치는 대류 가스의 영향 (Effects of Convection Gas on Formation of Sn Oxide Nanoparticles)

  • 이광민;정우남;양상선
    • 한국분말재료학회지
    • /
    • 제9권1호
    • /
    • pp.32-37
    • /
    • 2002
  • In the present study of IGC (Inert Gas Condensation) evaporation-condensation processing study, the effects of IGC convection gas on the crystallographic structure, size and shape of tin oxide nanoparticles were investigated. In addition, the phase transformation of tin oxide nanoparticles was studied after heat treatment. IGC processing was conducted at 1000℃ for 1 hr. The mixture gas of oxygen and helium was used as a convection gas. Metastable tetragonal SnO nanoparticles were obtained at a lower convection gas pressure, whereas amorphous tin oxide nanoparticles were obtained at a higher one. The formation of amorphous phase could be explained by the rapid quenching of the vaporized atoms. The resultant nanoparticles size was about 10 nm with a rounded shape. The tin oxide nanoparticles prepared by IGC were almost transformed to the stable tetragonal SnO₂ after heat treatment.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • 제25권4호
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

열분해 공정을 통해 합성된 산화 코발트 나노입자의 리튬 전기화학반응성 (Lithium Electroactivity of Cobalt Oxide Nanoparticles Synthesized Using Thermolysis Process)

  • 진연호;심현우;김동완
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.636-640
    • /
    • 2011
  • Nano-sized cobalt (II) oxide nanoparticles with a high crystallinity were synthesized using thermolysis of a $Co^{2+}$-oleate precursor at 310$^{\circ}C$. The phase and morphology of as-prepared cobalt oxide nanoparticles were characterized using X-ray diffraction, high-resolution transmission electron microscopy, and Brunauer-Emmett-Teller surface area measurements. The cobalt oxide nanoparticles were found to be spherical nanoclusters with an average diameter of approximately 200 nm, consisting of tiny nanocrystals (10-20 nm). Furthermore, the Li electroactivites of the cobalt oxide nanoparticles were investigated using cyclic voltammetry and galvanostatic cycling. The cobalt oxide nanoparticles could deliver high capacities over 420 mA h $g^{-1}$ at a C/5 current rate.

Synthesis and Characterization of Phase Pure NiO Nanoparticles via the Combustion Route using Different Organic Fuels for Electrochemical Capacitor Applications

  • Srikesh, G.;Nesaraj, A. Samson
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권1호
    • /
    • pp.16-25
    • /
    • 2015
  • Transition metal oxide nanocrystalline materials are playing major role in energy storage application in this scenario. Nickel oxide is one of the best antiferromagnetic materials which is used as electrodes in energy storage devices such as, fuel cells, batteries, electrochemical capacitors, etc. In this research work, nickel oxide nanoparticles were synthesized by combustion route in presence of organic fuels such as, glycine, glucose and and urea. The prepared nickel oxide nanoparticles were calcined at 600℃ for 3 h to get phase pure materials. The calcined nanoparticles were preliminarily characterized by XRD, particle size analysis, SEM and EDAX. To prepare nickel oxide electrode materials for application in supercapacitors, the calcined NiO nanoparticles were mixed with di-methyl-acetamide and few drops of nafion solution for 12 to 16 h. The above slurry was coated in the graphite sheet and dried at 50℃ for 2 to 4 h in a hot air oven to remove organic solvent. The dried sample was subjected to electrochemical studies, such as cyclic voltammetry, AC impedance analysis and chrono-coulometry studies in KOH electrolyte medium. From the above studies, it was found that nickel oxide nanoparticles prepared by combustion synthesis using glucose as a fuel exhibited resulted in low particle diameter (42.23 nm). All the nickel oxide electrodes have shown better good capacitance values suitable for electrochemical capacitor applications.

White Light Generation from Single Gallium Oxide Nanoparticles co-doped with Rare-Earth Metals

  • Patil, Prashant;Park, Jinsung;Lee, Seung Yong;Park, Jong-Ku;Cho, So-Hye
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.296-300
    • /
    • 2014
  • The synthesis of pure and rare-earth doped gallium oxide (${\beta}-Ga_2O_3$) nanoparticles is reported. The synthesized nanoparticles are characterized with XRD, TEM, and PL analyses. Strong blue emission is observed from un-doped gallium oxide nanoparticles, while nanoparticles doped with $Eu^{3+}$ and $Tb^{3+}$ give strong red and green emissions, respectively. When doped with $Eu^{3+}$ and $Tb^{3+}$ together, gallium oxide nanoparticles emit white light. The CIE coordinate of the emitted light was found to be (0.33, 0.33), which is well within the white light region.

산화에 의한 중공형 구리 산화물 나노입자 제조 (Synthesis of Hollow Cu Oxide Nanoparticles by Oxidation)

  • 이정구;백연경;정국채;최철진
    • 대한금속재료학회지
    • /
    • 제49권12호
    • /
    • pp.950-955
    • /
    • 2011
  • In the present study, the formation of hollow Cu oxide nanoparticles through the oxidation process at temperatures from 200 to $300^{\circ}C$ has been studied by transmission electron microscopy with Cu nanoparticles produced by the plasma arc discharge method. The Cu nanoparticles had a thin oxide layer on the surface at room temperature and the thickness of this oxide layer increased during oxidation in atmosphere at $200-300^{\circ}C$ However, the oxide layer consisted of $Cu_2O$ and CuO after oxidation at $200^{\circ}C$ whereas this layer was comprised of only CuO after oxidation at $300^{\circ}C$ On the other hand, hollow Cu oxide nanoparticles are obtained as a result of vacancy aggregation in the oxidation processes, resulting from the rapid outward diffusion of metal ions through the oxide layer during the oxidation process.