DOI QR코드

DOI QR Code

Effects of Convection Gas on Formation of Sn Oxide Nanoparticles

Sn 산화물 나노입자 형성에 미치는 대류 가스의 영향

  • ;
  • ;
  • ;
  • K. Niihara
  • 이광민 (전남대학교 공과대학 신소재공학부) ;
  • 정우남 (전남대학교 공과대학 자동차공학부) ;
  • 양상선 (사울대학교 기계항공공학부) ;
  • Published : 2002.02.01

Abstract

In the present study of IGC (Inert Gas Condensation) evaporation-condensation processing study, the effects of IGC convection gas on the crystallographic structure, size and shape of tin oxide nanoparticles were investigated. In addition, the phase transformation of tin oxide nanoparticles was studied after heat treatment. IGC processing was conducted at 1000℃ for 1 hr. The mixture gas of oxygen and helium was used as a convection gas. Metastable tetragonal SnO nanoparticles were obtained at a lower convection gas pressure, whereas amorphous tin oxide nanoparticles were obtained at a higher one. The formation of amorphous phase could be explained by the rapid quenching of the vaporized atoms. The resultant nanoparticles size was about 10 nm with a rounded shape. The tin oxide nanoparticles prepared by IGC were almost transformed to the stable tetragonal SnO₂ after heat treatment.

Keywords

References

  1. Mater. Trans. v.42 M. I. Baraton;L. Merhari https://doi.org/10.2320/matertrans.42.1616
  2. Intermetallics v.8 Y. B. Pithawalla;M. S. El Shall;S. C. Deevi https://doi.org/10.1016/S0966-9795(00)00076-5
  3. Mater. Trans. v.42 T. Hihara;D. Peng;K. Sumiyama https://doi.org/10.2320/matertrans.42.1480
  4. NanoStructured Mater. v.10 A. C. Xenoulis;G. Doukellis;T. Tsakalakos https://doi.org/10.1016/S0965-9773(99)00006-9
  5. Scripta Mater v.44 J. H. Yu;J. S. Lee;K. H. Ahn https://doi.org/10.1016/S1359-6462(01)00747-3
  6. NanoStructured Mater v.11 G. Skandan;Y.-J. Chen;N. Glumac;B. H. Kear https://doi.org/10.1016/S0965-9773(99)00028-8
  7. NanoStructured Mater v.11 A. Singhal;G. Skandan;A. Wang;N. Glumac;B. H. Kear;R. D. Hunt https://doi.org/10.1016/S0965-9773(99)00343-8
  8. Scripta Mater. v.44 A. Singhal;G. Skandan;N. Glumac;B. H. Kear https://doi.org/10.1016/S1359-6462(01)00905-8
  9. J. Aerosal Sci. v.28 V. Haas;R. Birringer;H. Gleiter;S. E. Pratsinis
  10. Mater. Sci. & Eng. A. v.A246 V. Haas;R. Birringer;H. Gleiter
  11. J. Aerosal Sci. v.30 S. Tsantilis;S. E. Pratsinis;V. Hass https://doi.org/10.1016/S0021-8502(98)00764-2
  12. Mater. Trans. v.42 Y. Kamimoto;T. Okuda;H. Fujii;K. Yoshioka;Y. Fukazawa https://doi.org/10.2320/matertrans.42.1603
  13. NanoStructured Mater. v.9 Feng Ye;M. C. Yang;X. K. Sun;W. D. Wei https://doi.org/10.1016/S0965-9773(97)00031-7
  14. J. Phys. Chem. Solids v.58 C. H. Shek;J. K. L. Lai;G. M. Lin;Y. F. Zheng;W. H. Liu https://doi.org/10.1016/S0022-3697(96)00112-6
  15. 대한금속학회지 v.34 안재평;박종구;허무영
  16. Met. and Mater. v.3 J. P. Ahn;J. K. Park;B. K. Kim;M. Y. Huh https://doi.org/10.1007/BF03025961
  17. NanoStructured Mater. v.11 M. Y. Huh;S. H. Kim;J. P. Ahn;J. K. Park;B. K. Kim https://doi.org/10.1016/S0965-9773(99)00034-3
  18. Solid State Ionics v.116 V. M. Jimenez(et al) https://doi.org/10.1016/S0167-2738(98)00271-9
  19. Materials Science and Technology v.15 R. W. Siegel;R. W. Cahn(ed.)
  20. Mater. Sci. Forum v.360-362 K. M. Lee;W. N. Juhng;K. K. Kang https://doi.org/10.4028/www.scientific.net/MSF.360-362.403