• 제목/요약/키워드: oxidative stress-induced injury

검색결과 277건 처리시간 0.026초

Tumor necrosis factor α-converting enzyme inhibitor attenuates lipopolysaccharide-induced reactive oxygen species and mitogen-activated protein kinase expression in human renal proximal tubule epithelial cells

  • Bae, Eun Hui;Kim, In Jin;Choi, Hong Sang;Kim, Ha Yeon;Kim, Chang Seong;Ma, Seong Kwon;Kim, In S.;Kim, Soo Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.135-143
    • /
    • 2018
  • Tumor necrosis $factor-{\alpha}$ ($TNF{\alpha}$) and the angiotensin system are involved in inflammatory diseases and may contribute to acute kidney injury. We investigated the mechanisms by which $TNF{\alpha}$-converting enzyme (TACE) contributes to lipopolysaccharide (LPS)-induced renal inflammation and the effect of TACE inhibitor treatment on LPS-induced cellular injury in human renal proximal tubule epithelial (HK-2) cells. Mice were treated with LPS (10 mg/kg, i.p.) and HK-2 cells were cultured with or without LPS ($10{\mu}g/ml$) in the presence or absence of a type 1 TACE inhibitor ($1{\mu}M$) or type 2 TACE inhibitor ($10{\mu}M$). LPS treatment induced increased serum creatinine, $TNF{\alpha}$, and urinary neutrophil gelatinase-associated lipocalin. Angiotensin II type 1 receptor, mitogen activated protein kinase (MAPK), and TACE increased, while angiotensin-converting enzyme-2 (ACE2) expression decreased in LPS-induced acute kidney injury and LPS-treated HK-2 cells. LPS induced reactive oxygen species and the down-regulation of ACE2, and these responses were prevented by TACE inhibitors in HK-2 cells. TACE inhibitors increased cell viability in LPS-treated HK-2 cells and attenuated oxidative stress and inflammatory cytokines. Our findings indicate that LPS activates renin angiotensin system components via the activation of TACE. Furthermore, inhibitors of TACE are potential therapeutic agents for kidney injury.

Protective Effects of Black Rice Extracts on Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

  • Lee, Seon-Mi;Choi, Youngmin;Sung, Jeehye;Kim, Younghwa;Jeong, Heon-Sang;Lee, Junsoo
    • Preventive Nutrition and Food Science
    • /
    • 제19권4호
    • /
    • pp.348-352
    • /
    • 2014
  • Black rice contains many biologically active compounds. The aim of this study was to investigate the protective effects of black rice extracts (whole grain extract, WGE and rice bran extract, RBE) on tert-butyl hydroperoxide (TBHP)-induced oxidative injury in HepG2 cells. Cellular reactive oxygen species (ROS), antioxidant enzyme activities, malondialdehyde (MDA) and glutathione (GSH) concentrations were evaluated as biomarkers of cellular oxidative status. Cells pretreated with 50 and $100{\mu}g/mL$ of WGE or RBE were more resistant to oxidative stress in a dose-dependent manner. The highest WGE and BRE concentrations enhanced GSH concentrations and modulated antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, catalase, and superoxide dismutase) compared to TBHP-treated cells. Cells treated with RBE showed higher protective effect compared to cells treated with WGE against oxidative insult. Black rice extracts attenuated oxidative insult by inhibiting cellular ROS and MDA increase and by modulating antioxidant enzyme activities in HepG2 cells.

Ga-mi-Yuk-Mi-Jihwang-Tang Ameliorates LPS-injected acute Liver Injury via Regulation of Sirtuin6 in Inflammasome Triggered-pyroptosis Using Mice Model

  • 임수아;조명래;김태수;성수희;김보람;최경민;정진우
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2022년도 추계학술대회
    • /
    • pp.114-114
    • /
    • 2022
  • Excessive endogenous endotoxin, especially lipopolysaccharide (LPS) reflux from gastrointestinal (GI) tract to the liver tissue is one of the most serious reasons of severe and acute liver injury which is mainly mediated by Kupffer cell activations. However, there is no clear molecular clues to explain the exact pathophysiological mechanism and effective drugs available till nowadays. We aimed to comprehend the pathophysiological features of LPS-induced liver injury and evaluate the efficacies of potential therapeutic drug, Ga-mi-Yuk-Mi-Jihwang-Tang (GYM), which is composed of herbal plants. GYM remarkably caused to normalize hepatic inflammation and oxidations against LPS-induced liver injury by evidence of serum liver enzymes, histopathological analysis, both hepatic protein and gene expression levels of pro-inflammatory cytokines, nitric oxide levels, and hepatic tissue levels of reactive oxygen species (ROS) levels, malondialdehyde (MDA), and 4-hydroxyneoneal, respectively. To assess molecular events in the hepatic tissue, we further found hepatic Sirtuin6 (Sirt6) levels were considerably depleted by LPS injection with aberrant alterations of Nrf2/HO-1 signaling pathways, whereas administration with GYM notably exerted to normalize these abnormalities. Our results exhibited that GYM would be one of target drug to diminish hepatic inflammation as well as oxidative stress by regulation of hepatic Sirt6 levels.

  • PDF

LPS로 유발한 장염증 모델에 대한 주초황금의 항산화 조절 및 장염증 개선 효과 (Ethanol-Heated Processed Scutellariae Radix Improve Inflammatory Response through an Inhibitory Effect against Oxidative Stress in Mice with the Lipopolysaccharide-induced Intestine Injury of Mice)

  • 신성호;신유옥;이주영;이아름;김민영;박찬흠;서부일;노성수
    • 대한본초학회지
    • /
    • 제30권4호
    • /
    • pp.81-88
    • /
    • 2015
  • Objectives : The aim of present study was to evaluate the beneficial effect of Scutellariae Radix (SR) and Scutellariae Radix EtOH-heated at 200℃ (SR200) using lipopolysaccharide (LPS) treated intestine of mice.Methods : Extract of SR and SR200 were orally administrated. Their effects were compared with vehicletreated LPS and normal groups. Subsequently, we measured reactive oxygen species (ROS) and nitric oxide in the serum and western blotting in the intestine.Results : The average weight in LPS treated (Vehicle) group was lowered significantly compare to that in non-treated normal group and this weight loss in the vehicle group was effectively prevented by the administration of SR and SR200 respectively. The increased oxidative stress biomarker levels such as reactive oxygen species (ROS) and nitric oxide (NO) in the serum was markedly decreased by treated with SR200. The decreased levels of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) induced by LPS injection were significantly restored by both SR and SR200 treatment. Moreover, increased inflammatory mediators and cytokines such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) in the LPS treated vehicle mice were significantly decreased through down-regulation c-JUN through reduction of oxidative stress.Conclusions : SR and SR200 could have benefit effect through down-regulation of abnormal oxidative stress in LPS induced intestine injury mice. Moreover, The anti-inflammatory activity of SR200 extract was better than SR extract in the LPS induced intestine injury mice.

Capsaicin Ameliorates Cisplatin-Induced Renal Injury through Induction of Heme Oxygenase-1

  • Jung, Sung-Hyun;Kim, Hyung-Jin;Oh, Gi-Su;Shen, AiHua;Lee, Subin;Choe, Seong-Kyu;Park, Raekil;So, Hong-Seob
    • Molecules and Cells
    • /
    • 제37권3호
    • /
    • pp.234-240
    • /
    • 2014
  • Cisplatin is one of the most potent chemotherapy agents. However, its use is limited due to its toxicity in normal tissues, including the kidney and ear. In particular, nephrotoxicity induced by cisplatin is closely associated with oxidative stress and inflammation. Heme oxygenase-1(HO-1), the rate-limiting enzyme in the heme metabolism, has been implicated in a various cellular processes, such as inflammatory injury and anti-oxidant/oxidant homeostasis. Capsaicin is reported to have therapeutic potential in cisplatin-induced renal failures. However, the mechanisms underlying its protective effects on cisplatin-induced nephrotoxicity remain largely unknown. Herein, we demonstrated that administration of capsaicin ameliorates cisplatin-induced renal dysfunction by assessing the levels of serum creatinine and blood urea nitrogen (BUN) as well as tissue histology. In addition, capsaicin treatment attenuates the expression of inflammatory mediators and oxidative stress markers for renal damage. We also found that capsaicin induces HO-1 expression in kidney tissues and HK-2 cells. Notably, the protective effects of capsaicin were completely abrogated by treatment with either the HO inhibitor ZnPP IX or HO-1 knockdown in HK-2 cells. These results suggest that capsaicin has protective effects against cisplatin-induced renal dysfunction through induction of HO-1 as well as inhibition oxidative stress and inflammation.

Epigallocatechin-3-Gallate (EGCG) Attenuates Traumatic Brain Injury by Inhibition of Edema Formation and Oxidative Stress

  • Zhang, Bo;Wang, Bing;Cao, Shuhua;Wang, Yongqiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권6호
    • /
    • pp.491-497
    • /
    • 2015
  • Traumatic brain injury (TBI) is a major cause of mortality and long-term disability, which can decrease quality of life. In spite of numerous studies suggesting that Epigallocatechin-3- gallate (EGCG) has been used as a therapeutic agent for a broad range of disorders, the effect of EGCG on TBI remains unknown. In this study, a weight drop model was established to evaluate the therapeutic potential of EGCG on TBI. Rats were administered with 100 mg/kg EGCG or PBS intraperitoneally. At different times following trauma, rats were sacrificed for analysis. It was found that EGCG (100 mg/kg, i.p.) treatment significantly reduced brain water content and vascular permeability at 12, 24, 48, 72 hour after TBI. Real-time PCR results revealed that EGCG inhibited TBI-induced IL-$1{\beta}$ and TNF-${\alpha}$ mRNA expression. Importantly, CD68 mRNA expression decreasing in the brain suggested that EGCG inhibited microglia activation. Western blotting and immunohistochemistry results showed that administering of EGCG significantly inhibited the levels of aquaporin-4 (AQP4) and glial fibrillary acidic protein (GFAP) expression. TBI-induced oxidative stress was remarkably impaired by EGCG treatment, which elevated the activities of SOD and GSH-PX. Conversely, EGCG significantly reduced the contents of MDA after TBI. In addition, EGCG decreased TBI-induced NADPH oxidase activation through inhibition of $p47^{phox}$ translocation from cytoplasm to plasma membrane. These data demonstrate that EGCG treatment may be an effective therapeutic strategy for TBI and the underlying mechanism involves inhibition of oxidative stress.

Protective Effect of Artificially Enhanced Level of L-Ascorbic Acid against Water Deficit-Induced Oxidative Stress in Rice Seedlings

  • Boo, Yong Chool;Cho, Moonjae;Jung, Jin
    • Journal of Applied Biological Chemistry
    • /
    • 제42권2호
    • /
    • pp.66-70
    • /
    • 1999
  • Effects of the enhanced level of L-ascorbic acid (AA) on the water deficit-induced oxidative damage were studied in rice (Oryza sativa L.) seedlings. The seedlings sprayed with 20 to 80 mM L-galactono-${\gamma}$-lactone (GL), a putative precursor of AA, showed 2 to 5-fold higher levels of AA compared with controls. Pretreatment of the seedlings with GL prior to water stress imposition caused virtually no effect on dehydration of tissues during water deficit but substantially mitigated oxidative injury, as accessed by 2-thiobarbituric acid-reactive substances, ${\alpha}$-tocopherol, chlorophylls and ${\beta}$-carotene. Proline accumulation during water stress was also significantly lowered in the treated seedlings. In a complementary experiment, AA retarded photodegradation of ${\alpha}$-tocopherol in isolated thylakoids far more efficiently than glutathione. GL in itself did not show any noticeable reactivity toward ${\alpha}$-tocopheroxyl radical. The results demonstrate the antioxidative function of AA in rice seedlings encountering water-limited environments, suggesting a critical role of AA as a defense against oxidative stress in plants.

  • PDF

대황과 감초 병용의 항산화 및 간보호효과 (Effect of Rheum undulatum Linne extract and Glycyrriza uralensis Fischer extract against arachidonic acid and iron-induced oxidative stress in HepG2 cell and CCl4-induced liver injury in mice)

  • 이은혜;백수연;김광연;이슬기;김상찬;이형식;김영우
    • 대한한의학방제학회지
    • /
    • 제24권3호
    • /
    • pp.163-174
    • /
    • 2016
  • Objectives : Rheum undulatum Linne and Glycyrriza uralensis Fischer are widely used herbal medicine. In this study, anti-oxidant and liver protective effects of R. undunlatum extract (RUE) and G. uralensis extract (GUE) were investigated in HepG2 cells, respectively. Oxidative stress and liver fibrosis were induced by arachidonic acid (AA) and iron, and CCl4.Methods : MTT assay was assessed for cell viability, and immunoblotting analysis was performed to detect expression of apoptosis related proteins. In addition, reactive oxygen species (ROS) and mitochondrial dysfunction were measured. In vivo, BALB/c mouse were orally administrated with the aqueous extract of 10 mg/kg RUE and 100 mg/kg GUE for 3 days and then, injected with CCl4 0.5 ml/kg body weight to induce acute liver damage. Serum ALT level was measured, and histological change was observed in Harris's hematoxylin and eosin stainResults : RUE and GUE pre-treatment increased relative cell viability in concentration dependent manner and altered the expression levels of apoptosis-related proteins such as procaspase 3, PARP and Bcl-xL. RUE and GUE also inhibited the mitochondrial dysfunction and excessive reactive oxygen species (ROS) production induced by AA and iron. In addition, RUE and GUE activated liver kinase B1 (LKB1), by increasing phosphorylation. Moreover, RUE and GUE treatment decreased liver injuries induced by CCl4, as evidenced by decreases in histological liver damage as well as serum alanine amino transferase (ALT) level.Conclusions : These data suggest that RUE and GUE has anti-oxidant and liver protective effects against AA and iron-induced oxidative stress and CCl4-induced liver injury.

마치현 70% 에탄올 추출물의 Heme Oxygenase-1 발현을 통한 산화적 스트레스에 대한 사람각질형성세포 보호 효과 (The Cytoprotective Action of Portulaca oleracea 70% EtOH Extracts via the Heme Oxygenase-1 on Hydrogen Peroxide-induced Oxidative Stress in Human Keratinocyte HaCaT Cells)

  • 서승희;정길생
    • 생약학회지
    • /
    • 제46권2호
    • /
    • pp.116-122
    • /
    • 2015
  • Keratinocytes are first barrier against outer challenges on skin. However, it is still largely unknown about effective protectors against ultraviolet B (UVB), and oxidative stress in human keratinocyte, HaCaT cells. Inducible heme oxygenase (HO)-1 acts against oxidants that are thought to play a role in the pathogenesis of skin disorders. Therefore, the purpose of this study was to evaluate the effect of Portulaca oleracea 70% EtOH extracts against hydrogen peroxide (H2O2)-induced oxidative stress in human keratinocytes, HaCaT cells. P. oleracea 70% EtOH extracts showed the potent protective effects on H2O2-induced toxicity by induced the expression of HO-1 in human keratinocyte, HaCaT cells. Furthermore, P. oleracea 70 % EtOH extracts caused the nuclear accumulation of nuclear factor E2-related factor 2 (Nrf2) in human keratinocytes, HaCaT cells. In addition, we found that treatment with c-Jun N-terminal kinase (JNK) inhibitor (SP600125) reduced P. oleracea 70% EtOH extracts-induced HO-1 expression, and JNK inhibitor (SP600125) also inhibited protective effects by P. oleracea 70% EtOH extracts. Therefore, these results suggest that P. oleracea 70 % EtOH extracts increases cellular resistance to H2O2-induced oxidative injury in human keratinocyte, HaCaT cells, presumably through JNK pathway-Nrf2-dependent HO-1 expression.

Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats

  • Lu, Kuan-Hung;Weng, Ching-Yi;Chen, Wei-Cheng;Sheen, Lee-Yan
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.316-325
    • /
    • 2017
  • Background: Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng (Panax ginseng), American ginseng (Panax quinquefolius), lotus seed (Nelumbo nucifera), and lily bulb (Lilium longiflorum). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride ($CCl_4$)-induced liver injury in rats. Methods: We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1st wk of treatment, rats were administered 20% $CCl_4$ (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Results: Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in $CCl_4$-treated rats. Moreover, $CCl_4$-induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited $CCl_4$-induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that $CCl_4$-triggered activation of hepatic stellate cells was reduced. Conclusion: These findings demonstrate that GE improves $CCl_4$-induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.