References
- Agarwal, A., Balla, J., Alam, J., Croatt, A.J., and Nath, K.A. (1995). Induction of heme oxygenase in toxic renal injury: a protective role in cisplatin nephrotoxicity in the rat. Kidney Int. 48, 1298-1307. https://doi.org/10.1038/ki.1995.414
- Arany, I., and Safirstein, R.L. (2003). Cisplatin nephrotoxicity. Semin. Nephrol. 23, 460-464. https://doi.org/10.1016/S0270-9295(03)00089-5
- Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816-824. https://doi.org/10.1038/39807
- Cenedeze, M.A., Goncalves, G.M., Feitoza, C.Q., Wang, P.M., Damiao, M.J., Bertocchi, A.P., Pacheco-Silva, A., and Camara, N.O. (2007). The role of toll-like receptor 4 in cisplatin-induced renal injury. Transplant Proc. 39, 409-411. https://doi.org/10.1016/j.transproceed.2007.01.032
- Chen, Q., Fischer, A., Reagan, J.D., Yan, L.J., and Ames, B.N. (1995). Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc. Natl. Acad. Sci. USA 92, 4337-4341. https://doi.org/10.1073/pnas.92.10.4337
- Cohen, S.M., and Lippard, S.J. (2001). Cisplatin: from DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol. 67, 93-130. https://doi.org/10.1016/S0079-6603(01)67026-0
- Hartsfield, C.L., Alam, J., and Choi, A.M. (1999). Differential signaling pathways of HO-1 gene expression in pulmonary and systemic vascular cells. Am. J. Physiol. 277, L1133-1141.
- Huang, S.P., Chen, J.C., Wu, C.C., Chen, C.T., Tang, N.Y., Ho, Y.T., Lo, C., Lin, J.P., Chung, J.G., and Lin, J.G. (2009). Capsaicin-induced apoptosis in human hepatoma HepG2 cells. Anticancer Res. 29, 165-174.
- Joe, B., and Lokesh, B.R. (1994). Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta 1224, 255-263. https://doi.org/10.1016/0167-4889(94)90198-8
- Joung, E.J., Li, M.H., Lee, H.G., Somparn, N., Jung, Y.S., Na, H.K., Kim, S.H., Cha, Y.N., and Surh, Y.J. (2007). Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid. Redox Signal. 9, 2087-2098. https://doi.org/10.1089/ars.2007.1827
- Kogure, K., Goto, S., Nishimura, M., Yasumoto, M., Abe, K., Ohiwa, C., Sassa, H., Kusumi, T., and Terada, H. (2002). Mechanism of potent antiperoxidative effect of capsaicin. Biochim. Biophys. Acta 1573, 84-92. https://doi.org/10.1016/S0304-4165(02)00335-5
- Kuhad, A., Pilkhwal, S., Sharma, S., Tirkey, N., and Chopra, K. (2007). Effect of curcumin on inflammation and oxidative stress in cisplatin-induced experimental nephrotoxicity. J. Agric. Food Chem. 55, 10150-10155. https://doi.org/10.1021/jf0723965
- Kuriakose, G.C., and Kurup, M.G. (2008). Evaluation of renoprotective effect of Aphanizomenon flos-aquae on cisplatin-induced renal dysfunction in rats. Ren. Fail. 30, 717-725. https://doi.org/10.1080/08860220802134730
- Lee, P.J., Camhi, S.L., Chin, B.Y., Alam, J., and Choi, A.M. (2000). AP-1 and STAT mediate hyperoxia-induced gene transcription of heme oxygenase-1. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L175-182. https://doi.org/10.1152/ajplung.2000.279.1.L175
- Luke, D.R., Vadiei, K., and Lopez-Berestein, G. (1992). Role of vascular congestion in cisplatin-induced acute renal failure in the rat. Nephrol. Dial. Transplant. 7, 1-7.
- Maheshwari, R.A., Sailor, G.U., Patel, L., and Balaraman, R. (2013). Amelioration of cisplatin-induced nephrotoxicity by statins. Indian J. Pharmacol. 45, 354-358. https://doi.org/10.4103/0253-7613.115016
- Maines, M.D. (1988). Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications. FASEB. J. 2, 2557-2568. https://doi.org/10.1096/fasebj.2.10.3290025
- Mitazaki, S., Hashimoto, M., Matsuhashi, Y., Honma, S., Suto, M., Kato, N., Nakagawasai, O., Tan-No, K., Hiraiwa, K., Yoshida, M., et al. (2013). Interleukin-6 modulates oxidative stress produced during the development of cisplatin nephrotoxicity. Life Sci. 92, 694-700. https://doi.org/10.1016/j.lfs.2013.01.026
- Mukhopadhyay, P., Rajesh, M., Pan, H., Patel, V., Mukhopadhyay, B., Batkai, S., Gao, B., Hasko, G., and Pacher, P. (2010). Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress, and cell death in nephropathy. Free Radic. Biol. Med. 48, 457-467. https://doi.org/10.1016/j.freeradbiomed.2009.11.022
- Mukhopadhyay, P., Horvath, B., Kechrid, M., Tanchian, G., Rajesh, M., Naura, A.S., Boulares, A.H., and Pacher, P. (2011). Poly(ADPribose) polymerase-1 is a key mediator of cisplatin-induced kidney inflammation and injury. Free Radic. Biol. Med. 51, 1774-1788. https://doi.org/10.1016/j.freeradbiomed.2011.08.006
- Nath, K.A., Haggard, J.J., Croatt, A.J., Grande, J.P., Poss, K.D., and Alam, J. (2000). The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. Am. J. Pathol. 156, 1527-1535. https://doi.org/10.1016/S0002-9440(10)65024-9
- Okada, Y., and Okajima, H. (2001). Antioxidant effect of capsaicin on lipid peroxidation in homogeneous solution, micelle dispersions and liposomal membranes. Redox Rep. 6, 117-122. https://doi.org/10.1179/135100001101536120
- Owuor, E.D., and Kong, A.N. (2002). Antioxidants and oxidants regulated signal transduction pathways. Biochem. Pharmacol. 64, 765-770. https://doi.org/10.1016/S0006-2952(02)01137-1
- Oyama, Y., Hashiguchi, T., Taniguchi, N., Tancharoen, S., Uchimura, T., Biswas, K.K., Kawahara, K., Nitanda, T., Umekita, Y., Lotz, M., et al. (2010). High-mobility group box-1 protein promotes granulomatous nephritis in adenine-induced nephropathy. Lab. Invest. 90, 853-866. https://doi.org/10.1038/labinvest.2010.64
- Pabla, N., and Dong, Z. (2008). Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73, 994-1007. https://doi.org/10.1038/sj.ki.5002786
- Ramesh, G., and Reeves, W.B. (2002). TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835-842. https://doi.org/10.1172/JCI200215606
- Sahu, B.D., Kuncha, M., Sindhura, G.J., and Sistla, R. (2013). Hesperidin attenuates cisplatin-induced acute renal injury by decreasing oxidative stress, inflammation and DNA damage. Phytomedicine 20, 453-460. https://doi.org/10.1016/j.phymed.2012.12.001
- Sass, G., Barikbin, R., and Tiegs, G. (2012). The multiple functions of heme oxygenase-1 in the liver. Z. Gastroenterol. 50, 34-40. https://doi.org/10.1055/s-0031-1282046
- Shimeda, Y., Hirotani, Y., Akimoto, Y., Shindou, K., Ijiri, Y., Nishihori, T., and Tanaka, K. (2005). Protective effects of capsaicin against cisplatin-induced nephrotoxicity in rats. Biol. Pharm. Bull. 28, 1635-1638. https://doi.org/10.1248/bpb.28.1635
- Shiraishi, F., Curtis, L.M., Truong, L., Poss, K., Visner, G.A., Madsen, K., Nick, H.S., and Agarwal, A. (2000). Heme oxygenase-1 gene ablation or expression modulates cisplatin-induced renal tubular apoptosis. Am. J. Physiol. Renal Physiol. 278, F726-736. https://doi.org/10.1152/ajprenal.2000.278.5.F726
- Siddik, Z.H. (2003). Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265-7279. https://doi.org/10.1038/sj.onc.1206933
- So, H., Kim, H., Lee, J.H., Park, C., Kim, Y., Kim, E., Kim, J.K., Yun, K.J., Lee, K.M., Lee, H.Y., et al. (2007). Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J. Assoc. Res. Otolaryngol. 8, 338-355. https://doi.org/10.1007/s10162-007-0084-9
- So, H., Kim, H., Kim, Y., Kim, E., Pae, H.O., Chung, H.T., Kim, H.J., Kwon, K.B., Lee, K.M., Lee, H.Y., et al. (2008). Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J. Assoc. Res. Otolaryngol. 9, 290-306. https://doi.org/10.1007/s10162-008-0126-y
- Szallasi, A., and Blumberg, P.M. (1999). Vanilloid (Capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 159-212.
- Wang, D., and Lippard, S.J. (2005). Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307-320. https://doi.org/10.1038/nrd1691
- Zhang, J., Nagasaki, M., Tanaka, Y., and Morikawa, S. (2003). Capsaicin inhibits growth of adult T-cell leukemia cells. Leuk. Res. 27, 275-283. https://doi.org/10.1016/S0145-2126(02)00164-9
- Zhang, B., Ramesh, G., Uematsu, S., Akira, S., and Reeves, W.B. (2008). TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J. Am. Soc. Nephrol. 19, 923-932. https://doi.org/10.1681/ASN.2007090982
Cited by
- Ameliorative effect of lycopene effect on cisplatin-induced nephropathy in patient vol.6, pp.3, 2017, https://doi.org/10.15171/jnp.2017.25
- Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity vol.2016, 2016, https://doi.org/10.1155/2016/4320374
- Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism vol.83, 2015, https://doi.org/10.1016/j.fct.2015.05.007
- The aqueous extract of cinnamon bark ameliorated cisplatin-induced cytotoxicity in vero cells without compromising the anticancer efficiency of cisplatin 2016, https://doi.org/10.5507/bp.2016.034
- Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice vol.8, pp.10, 2016, https://doi.org/10.3390/nu8100648
- Heme Oxygenase 1 as a Therapeutic Target in Acute Kidney Injury vol.69, pp.4, 2017, https://doi.org/10.1053/j.ajkd.2016.10.037
- Isoliquiritigenin pretreatment attenuates cisplatin induced proximal tubular cells (LLC-PK1) death and enhances the toxicity induced by this drug in bladder cancer T24 cell line vol.109, 2017, https://doi.org/10.1016/j.fct.2017.08.047
- Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice vol.10, pp.4, 2015, https://doi.org/10.1371/journal.pone.0124775
- Biliary tract external drainage increases the expression levels of heme oxygenase-1 in rat livers vol.20, pp.1, 2015, https://doi.org/10.1186/s40001-015-0152-2
- Effects of cisplatin on testicular enzymes and Sertoli cell function in rats vol.2, pp.4, 2015, https://doi.org/10.2131/fts.2.137
- Bioavailability of capsaicin and its implications for drug delivery vol.196, 2014, https://doi.org/10.1016/j.jconrel.2014.09.027
- Pu-erh Tea Powder Preventive Effects on Cisplatin-Induced Liver Oxidative Damage in Wistar Rats vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7389
- Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows vol.98, pp.9, 2015, https://doi.org/10.3168/jds.2014-9294
- Proximal tubule-targeted heme oxygenase-1 in cisplatin-induced acute kidney injury vol.310, pp.5, 2016, https://doi.org/10.1152/ajprenal.00335.2015
- Transmembrane BAX Inhibitor Motif-6 (TMBIM6) protects against cisplatin-induced testicular toxicity vol.33, pp.3, 2018, https://doi.org/10.1093/humrep/dex381
- Alterations in Gastric Mucosal Expression of Calcitonin Gene-Related Peptides, Vanilloid Receptors, and Heme Oxygenase-1 Mediate Gastroprotective Action of Carbon Monoxide against Ethanol-Induced Gastric Mucosal Lesions vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19102960
- Synergistic inhibitory effects of capsaicin combined with cisplatin on human osteosarcoma in culture and in xenografts vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0922-0
- Effect of combination sildenafil and gemfibrozil on cisplatin-induced nephrotoxicity; role of heme oxygenase-1 vol.40, pp.1, 2018, https://doi.org/10.1080/0886022X.2018.1455596
- The Investigation of the Antitumor Agent Toxicity and Capsaicin Effect on the Electron Transport Chain Enzymes, Catalase Activities and Lipid Peroxidation Levels in Lung, Heart and Brain Tissues of Ra vol.23, pp.12, 2018, https://doi.org/10.3390/molecules23123267
- Capsaicin Protects Against Cisplatin Ototoxicity by Changing the STAT3/STAT1 Ratio and Activating Cannabinoid (CB2) Receptors in the Cochlea vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-40425-9
- Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity vol.19, pp.14, 2019, https://doi.org/10.2174/1389557519666190320124438
- Effects of Chronic Administration of Capsaicin on Biomarkers of Kidney Injury in Male Wistar Rats with Experimental Diabetes vol.24, pp.1, 2014, https://doi.org/10.3390/molecules24010036
- Embelin attenuates cisplatin‐induced nephrotoxicity: Involving inhibition of oxidative stress and inflammation in addition with activation of Nrf‐2/Ho‐1 pathway vol.45, pp.3, 2019, https://doi.org/10.1002/biof.1502
- Chili Intake Is Inversely Associated with Chronic Kidney Disease among Adults: A Population-Based Study vol.11, pp.12, 2014, https://doi.org/10.3390/nu11122949
- Renoprotective Effects of a New Free Radical Scavenger, XH-003, against Cisplatin-Induced Nephrotoxicity vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9820168
- Naturally Derived Heme-Oxygenase 1 Inducers and Their Therapeutic Application to Immune-Mediated Diseases vol.11, pp.None, 2014, https://doi.org/10.3389/fimmu.2020.01467
- Ameliorative Effect of Linalool in Cisplatin-Induced Nephrotoxicity: The Role of HMGB1/TLR4/NF-κB and Nrf2/HO1 Pathways vol.10, pp.11, 2020, https://doi.org/10.3390/biom10111488
- Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases vol.22, pp.4, 2014, https://doi.org/10.3390/ijms22042009
- Toll-like receptor 4: An attractive therapeutic target for acute kidney injury vol.271, pp.None, 2014, https://doi.org/10.1016/j.lfs.2021.119155
- Danshensu attenuates cisplatin-induced nephrotoxicity through activation of Nrf2 pathway and inhibition of NF-κB vol.142, pp.None, 2021, https://doi.org/10.1016/j.biopha.2021.111995