• Title/Summary/Keyword: oxidative stress response

Search Result 433, Processing Time 0.025 seconds

Nucleus-DNA Damage and Different Response of Plant Cells to Paraquat in Relation to Enzyme Activity of Superoxide Dismutase. (Superoxide dismutase의 활성차이에 따른 식물세포의 paraquat에 대한 반응과 핵 DNA 손상 검정)

  • 권순태;이명현;오세명;정도철;김길웅
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.614-619
    • /
    • 2004
  • This study was undertaken to investigate the different responses of cultured plant cells to paraquat treatment and nucleus-DNA damage in relation to enzyme activity of superoxide dismutase (SOD). Furthermore, this study was also carried out to understand the antioxidative mechanism of plant cells to environmental stress. We selected two different species of plant cultured cells, Ipomoea batatas as high-SOD species and Lonicera japonica as low-SOD species. The total activity and specific activity of SOD in a chlorophyllous cell of I. batatas were 3,736 unit/gㆍfresh weight and 547 unit/mgㆍprotein, respectively, and those in L. japonica were 23 unit/gㆍfresh weight and 13 unit/mgㆍprotein, respectively SOD activity in chlorophyllous I. batatas cells reached its maximum level at 10 to 15 days after subculture, whereas that in L. japonica remained at a very low SOD level during the whole period of subculture. In comparison to L. japonica, I. batatas, a high-SOD species, showed high tolerance to paraquat 10 and 50 mg/l treatment in terms of cell viability and electrolyte leakage. Based on the result of comet assay, the nucleus-DNA damage of two species by paraquat 50 mg/l treatment was not significantly different. However, I. batatas cells repaired their damaged DNA more effectively than the cells of the low-SOD species, L. japonica.

Effects of Lipopolysaccharide-Induced Heme Oxygenase and Carbon Monoxide Production on the Aortic Contractility (Lipopolysaccharide에 의한 Heme Oxygenase Induction과 Carbon Monoxide생성이 혈관수축력에 미치는 영향)

  • 장우성;손의동;이석용
    • YAKHAK HOEJI
    • /
    • v.45 no.1
    • /
    • pp.78-84
    • /
    • 2001
  • Heme oxygenase is a rate-limiting enzyme in heme catabolism that cleaves heme to form biliverdin, iron, and carbon monoxide. Heme oxygenase-1 is expressed in many types of cells and tissues and is highly induced in response to oxidative stress. Carbon monoxide, one of the products of heme oxygenase, can stimulate soluble guanylate cyclase and dilate the vascular smooth muscle. So, the induction of heme oxygenase by lipopolysaccharide (LPS)-induced oxydative stress and the effect of the resultant carbon monoxide on aortic contractility were examined in this study. Zinc protoporphyrine IX (ZnPP), a inhibitor of heme oxygenase, elicited weak contraction of thoracic aortic ring, and this effect was more potent in aorta of LPS-treated rats than control and was blocked by methylene blue. The hyperreactivity to ZnPP in LPS-treated group was blocked by co-treatment with aminoguanidine. In the aortic ring of LPS-treated rats, ZnPP didn't change the vasoreactivity to phenylephrine or acetylcholine. ZnPP elicited hyper-tensive effect in concious rats, and pretreatment with LPS did not affect this effect. Prazosin significantly diminished the hypertensive effect of ZnPP. These results indicate that LPS induced heme oxygenase in aotra, and the resultant carbon monoxide diminished the aortic reactivity to vasoconstrictor.

  • PDF

Alteration in Pyridine Nucleotide Status in Cells as an Adaptive Response to Water Stress in Rice (Oryza sativa L.) Seedlings

  • Boo, Yong-Chool;Jung, Jin
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.228-234
    • /
    • 1998
  • An adaptive measure of photosynthetic cells to a condition identified with a reduction of cellular energy charge, caused by water deficit-induced impairment of photosynthetic ATP production, was investigated using hydroponically cultured rice seedlings. Water stress treatment of the seedlings resulted in a marked decrease in cellular ATP level, a significant increase in the content of NAD(H) and concurrent decrease in that of NADP(H) in shoots, which accompanied a decrease in the activity of NAD kinase (EC 2.7.1.23) that specifically converts NAD(H) to NADP(H). The decline in the enzyme activity was particularly evident in the $Ca^{2+}/calmodulin-dependent$ kinase, the major form of NAD kinase in plants, whereas the level of active calmodulin remained unchanged during water deficit. The ratio of $NADP^+$ to NADPH was maintained nearly constant and no increases were seen in the level of $H_2O_2$ and the activities of $superoxide/H_2O_2-detoxifying$ enzymes in shoots stress-treated for two days. Based on these results, it may be suggested that rice plants take a strategy to cope with an adverse situation of limited photophosphorylation created by water deficit in that cells facilitate ATP production through glycolysis and oxidative phosphorylation; in doing so, rice cells suppress NAD kinase activity, consequently up-sizing the NAD(H) pool at the expense of the NADP(H) pool. Several parameters associated with the stress symptoms are also of implicative that there is no overproduction of superoxide radical or the related active oxygen at least in rice seedlings.

  • PDF

Transgenic Strategy to Improve Stress Resistance of Crop Plants

  • Horvath, Gabor V.;Oberschall, Attila;Deak, Maria;Sass, Laszlo;Vass, Imre;Barna, Balazs;Kiraly, Zoltan;Hideg, Eva;Feher, Attila
    • Journal of Plant Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.61-68
    • /
    • 1999
  • Rapid accumulation of reactive oxygen species (ROS) and their toxic reaction products with lipids and proteins significantly contributes to the damage of crop plants under biotic and abiotic stresses. We have identified several stress activated alfalfa genes, including the gene of the alfalfa ferritin and a novel NADPH-dependent aldose/aldehyde reductase enzyme. Transgenic tobacco plants that synthesize alfalfa ferritin in vegetative tissues-either in its processed form in chloroplast or in the cytoplasmic non-processed form-retained photosynthetic function upon free radical toxicity generated by paraquat treatment and exhibited tolerance to necrotic damage caused by viral and fungal infections. We propose that by sequestering intracellular iron involved in generation of the very reactive hydroxyl radicals through a Fenton reaction, ferritin protects plant cells from oxidative damage. Our preliminary results with the other stress-inducable alfalfa gene (a NADPH-dependent aldo-keto reductase) indicate, that the encoded enzyme may play role in the stress response of the plant cells. These studies reveal new pathways in plants that can contribute to the increased stress resistance with a potential use in crop improvement.

  • PDF

GST2 is Required for Nitrogen Starvation-Induced Filamentous Growth in Candida albicans

  • Lee, So-Hyoung;Chung, Soon-Chun;Shin, Jongheon;Oh, Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1207-1215
    • /
    • 2014
  • Candida albicans, the major human fungal pathogen, undergoes morphological transition from the budding yeast form to filamentous growth in response to nitrogen starvation. In this study, we identified a new function of GST2, whose expression was required for filamentous growth of C. albicans under nitrogen-limiting conditions. The Gst2p showed Gst activity and required response to oxidative stress. The ${\Delta}gst2$ mutant displayed predominantly yeast phase growth in low ammonium media. Such morphological defect of ${\Delta}gst2$ mutants was not rescued by overexpression of Mep2p, Cph1p, or Efg1p, but was rescued by either overexpression of a hyperactive $RAS1^{G13V}$ allele or through exogenous addition of cyclic AMP. In addition, the ${\Delta}gst2$ mutants had lower levels of RAS1 transcripts than wild-type cells under conditions of nitrogen starvation. These results were consistent with the Ras1-cAMP pathway as a possible downstream target of Gst2p. These findings suggest that Gst2p is a significant component of nitrogen starvation-induced filamentation in C. albicans.

Inhibitory effect of luthione on tacrolimus-induced DNA damage, apoptosis and inflammatory response in olive flounder natural embryo cells (넙치 배아세포에서 tacrolimus에 의한 DNA 손상, 세포사멸 및 염증성 반응에 대한 luthione의 억제 효과)

  • Park, Sang Eun;Choi, Yung Hyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Tacrolimus, a type of macrolide produced by Streptomyces tsukubaensis, is widely used as an immunosuppressant. However, continuous exposure to tacrolimus causes oxidative stress in normal cells, ultimately inducing cell injury. Therefore, this study investigated whether luthione, a reduced glutathione, could inhibit tacrolimus-induced cytotoxicity in olive flounder (hirame) natural embryo (HINAE) cells. According to the results, luthione significantly inhibited tacrolimus-induced reduction in cell viability in a concentration-dependent manner. Additinally, although luthione unaffected autophagy by tacrolimus, tacrolimus-induced apoptosis was significantly suppressed in the presence of luthione. Luthione also markedly blocked DNA damage in tacrolimus-treated HINAE cells, associated with the inhibition of reactive oxygen species (ROS) generation. Additionally, tacrolimus cytotoxicity in HINAE cells was correlated with increased inflammatory response, also attenuated by luthione. Collectively, these results show that at least luthione protects HINAE cells against tacrolimus-induced DNA damage, apoptosis, and inflammation, but not autophagy, by scavenging ROS. Although additional in-vivo studies are required, this study's results can be used as a basis for utilizing luthione to reduce the toxicity of fish cells caused by excessive immune responses.

Suppressive effects of ethanol extract of Aralia elata on UVB-induced oxidative stress in human keratinocytes (자외선 B를 조사한 인간유래각질세포에서 두릅순 에탄올추출물의 산화적 스트레스 억제효과)

  • Kwak, Chung Shil;Yang, Jiwon
    • Journal of Nutrition and Health
    • /
    • v.49 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • Purpose: Ultraviolet (UV)-induced oxidative stress contributes to several adverse biological effects on skin. Many phenolic phytochemicals have been shown to have antioxidant properties and protect skin cells from UV-induced oxidative damage. In this study, we investigated whether or not Aralia elata (AE) has a protective effect against UVB-induced reactive oxygen species (ROS), ultimately leading to photoaging. Methods: Phenolic content of dried AE and antioxidant properties of AE extract in 70% ethanol weredetermined by measuring DPPH and ABTS radical scavenging activities and ferric reducing antioxidant power (FRAP). The effect of AE extract on cellular ROS generation and expression levels of oxidative stress-response proteins such as superoxide dismutase (SOD)-1, catalase, nuclear factor-erythroid 2-related factor (Nrf)-2, and heme oxygenase (HO)-1 in UVB-irradiated ($75mJ/cm^2$) human keratinocytes (HaCaT) were further determined by 2'-7'-dichlorofluoresceine diacetate assay and Western blotting, respectively. Results: The total phenolic and flavonoid contents of dried AE were 20.15 mg tannic acid/g and 18.75 mg rutin/g, respectively. The $IC_{50}$ of AE extract against DPPH radical was $98.5{\mu}g/mL$, and ABTS radical scavenging activity and FRAP upon treatment with $1,000{\mu}g/mL$ of AE extract were $41.8{\mu}g\;ascorbic\;acid\;(AA)\;eq./mL$ and $29.7{\mu}g\;AA\;eq./mL$,m respectively. Pretreatment with AE extract significantly reduced (p < 0.05) ROS generation compared to that in UVB-irradiated control HaCaT cells. Pretreatment with AE extract reversed reduction of Nrf-2 and SOD-1 protein expression and induction of HO-1 protein expression caused by UVB exposure in HaCaT cells, whereas it did not affect catalase expression. Conclusion: AE extract in 70% ethanol demonstrated a protective effect against UVB-induced oxidative stress and decreased expression of Nrf-2 and SOD-1 in human keratinocytes. These findings suggest that AE ethanol extract might have potential as a natural resource for a skin anti-photoaging product in the food and cosmetic industry.

Microarray Analysis of Radiation Related Gene Expression in Mutants of Bacillus lentimorbus WJ5 Induced by Gamma Radiation (Bacillus lentimorbus WJ5의 감마선유도 돌연변이체들에서 공통으로 발현되는 방사선 관련 유전자의 microarray 분석)

  • Lee Young-Keun;Chang Hwa-Hyoung;Jang Yu-Sin;Huh Jae-Ho;Hyung Seok-Won;Chung Hye-Young
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.472-477
    • /
    • 2004
  • To study the radiation related gene expression in mutants of Bacillus lentimorbus WJ5 induced by gamm radiation, the simultaneous gene expression was analyzed by DNA micro array. We constructed DNA chips including two thousand randomly digested genome spots of B. lentimorbus WJ5 and compared its quantitative aspect with seven mutants induced by gamma radiation $(^{60}/Co)$. From the cluster analysis of gene expression pattern, totally 408 genes were expressed and 27 genes were significantly upregulated by the gamma radiation in all mutants. Especially, genes involved in repair (mutL, mutM), energy metabolism (acsA, sdhB, pgk, yhjB, citB), protease (npr), and reduction response to oxidative stress (HMM) were simultaneously upregulated. It seems that the induction of the direct and/or indirect repair related genes in mutants induced by gamma radiation could be remarkably different from the adaptive responses against acute exposure to radiation.

Suboptimal Mitochondrial Activity Facilitates Nuclear Heat Shock Responses for Proteostasis and Genome Stability

  • Dongkeun Park;Youngim Yu;Ji-hyung Kim;Jongbin Lee;Jongmin Park;Kido Hong;Jeong-Kon Seo;Chunghun Lim;Kyung-Tai Min
    • Molecules and Cells
    • /
    • v.46 no.6
    • /
    • pp.374-386
    • /
    • 2023
  • Thermal stress induces dynamic changes in nuclear proteins and relevant physiology as a part of the heat shock response (HSR). However, how the nuclear HSR is fine-tuned for cellular homeostasis remains elusive. Here, we show that mitochondrial activity plays an important role in nuclear proteostasis and genome stability through two distinct HSR pathways. Mitochondrial ribosomal protein (MRP) depletion enhanced the nucleolar granule formation of HSP70 and ubiquitin during HSR while facilitating the recovery of damaged nuclear proteins and impaired nucleocytoplasmic transport. Treatment of the mitochondrial proton gradient uncoupler masked MRP-depletion effects, implicating oxidative phosphorylation in these nuclear HSRs. On the other hand, MRP depletion and a reactive oxygen species (ROS) scavenger non-additively decreased mitochondrial ROS generation during HSR, thereby protecting the nuclear genome from DNA damage. These results suggest that suboptimal mitochondrial activity sustains nuclear homeostasis under cellular stress, providing plausible evidence for optimal endosymbiotic evolution via mitochondria-to-nuclear communication.

Molecular cloning of metal-responsive transcription factor-1 (MTF-1) and transcriptional responses to metal and heat stresses in Pacific abalone, Haliotis discus hannai

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.7
    • /
    • pp.9.1-9.13
    • /
    • 2017
  • Background: Metal-responsive transcription factor-1 (MTF-1) is a key transcriptional regulator playing crucial roles in metal homeostasis and cellular adaptation to diverse oxidative stresses. In order to understand cellular pathways associated with metal regulation and stress responses in Pacific abalone (Haliotis discus hannai), this study was aimed to isolate the genetic determinant of abalone MTF-1 and to examine its expression characteristics under basal and experimentally stimulated conditions. Results: The abalone MTF-1 shared conserved features in zinc-finger DNA binding domain with its orthologs; however, it represented a non-conservative shape in presumed transactivation domain region with the lack of typical motifs for nuclear export signal (NES) and Cys-cluster. Abalone MTF-1 promoter exhibited various transcription factor binding motifs that would be potentially related with metal regulation, stress responses, and development. The highest messenger RNA (mRNA) expression level of MTF-1 was observed in the testes, and MTF-1 transcripts were detected during the entire period of embryonic and early ontogenic developments. Abalone MTF-1 was found to be Cd inducible and highly modulated by heat shock treatment. Conclusion: Abalone MTF-1 possesses a non-consensus structure of activation domains and represents distinct features for its activation mechanism in response to metal overload and heat stress. The activation mechanism of abalone MTF-1 might include both indirect zinc sensing and direct de novo synthesis of transcripts. Taken together, results from this study could be a useful basis for future researches on stress physiology of this abalone species, particularly with regard to heavy metal detoxification and thermal adaptation.