• 제목/요약/키워드: oxidation rates

검색결과 373건 처리시간 0.024초

Fe-XAl-0.1Y(X =5, 10, 14 wt.%) 합금의 고온 산화거동 (High Temperature Oxidation Behaviour of Fe-XAl-0.1Y(X = 5, 10, 14 wt.%) Alloys)

  • 이병우;서원찬;박찬
    • 한국재료학회지
    • /
    • 제13권12호
    • /
    • pp.791-795
    • /
    • 2003
  • The oxidation behaviour of Fe-XAl-0.1Y(X= 5, 10, 14 wt.%) alloys were investigated at 1073, 1173 and 1273 K in oxygen/ nitrogen gas atmosphere for 1∼24 hrs using SEM/EDX, XRD and EPMA. The weight changes of Fe-XAl-0.1Y alloys followed the parabolic rate law. Oxidation rates of 10Al and 14Al alloys were ten times lower than that of 5Al alloys. This is attributed to the formations of protective $A1_2$$O_3$oxides on the surface of 10Al and 14Al alloys. The oxidation product scales of the 5Al alloy showed that thick iron oxide scales($Fe_2$$O_3$, $Fe_3$$O_4$) containing porosities formed during early stages of oxidation. With continued oxidation, aluminum oxide was formed at the alloy/scale interface.

경상남도 가좌산의 소나무, 참나무, 밤나무 우점 산림토양 별 메탄 산화능 평가 (Evaluation of Methane Oxidation Potentials of Alpine Soils Having Different Forestation Structure in Gajwa mountain)

  • 박용권;김상윤;권효숙;김필주
    • 한국환경농학회지
    • /
    • 제33권4호
    • /
    • pp.306-313
    • /
    • 2014
  • BACKGROUND: Forest soils contain microbes capable of consuming atmospheric methane ($CH_4$), an amount matching the annual increase in $CH_4$ concentration in the atmosphere. However, the effect of plant residue production by different forest structure on $CH_4$ oxidation is not studied in Korea. The objective of this study was to evaluate the effect of Korean alpine soils having different forestation structure on $CH_4$ uptake rates. METHODS AND RESULTS: the $CH_4$ flux was measured at three sites dominated with pine, chestnut and oak trees in southern Korea. The $CH_4$ uptake potentials were evaluated by a closed chamber method for a year. The $CH_4$ uptake rate was the highest in the pine tree soil ($1.05mg/m^2/day$) and then followed by oak ($0.930mg/m^2/day$) and chestnut trees ($0.497mg/m^2/day$). The $CH_4$ uptake rates were highly correlated to soil organic matter and moisture contents, and total microbial and methanotrophs activities. Different with the general concent, there was no any correlation between $CH_4$ oxidation rates, and soil temperature and labile carbon concentrations, irrespective with tree species. CONCLUSION: Conclusively, the methane oxidation rate was correlated in positive manner with organic matter, abundance of methanotrophs. Methane oxidation was different among tree species. This results could be used to estimate methane oxidation rate in forest of Korea after complementing information about statistical data and methane oxidation of other site.

오존 및 오존/UV 산화법을 이용한 휴믹산의 분해와 THM 발생능의 감소 (Decomposition of Humic Acid and Reduction of THM Formation Potential by Ozone and Combined Ozone/Ultraviolet Oxidation)

  • 박주석;박태진;권봉기
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.55-63
    • /
    • 1996
  • This research was based on comparing ozonation with combined ozone/ultraviolet oxidation through the methods of reducing THM produced during water treatment. The results were as follows ; 1. The decline of THM concentration was appeared according as ozone dosage increases with ozonation and combined ozone/ultraviolet oxidation. The more effective method was the treatment of irradiating UV then ozonation. In the beginning of reaction the decline rate of THM formation potential was low, I thought it was because that the reaction of ozone and humic acid needed times to be steady state, or that THM formation potential existed according to humic acid. 2. The effect of combined ozone/ultraviolet oxidation when ozone dosage was 4.2mg/L min was almost the same that of ozonation when ozone dosage was 8.6mg/L min. 3. In experiment of TOC decline through ozonation and combined ozone/ultraviolet oxidation, TOC concentration was also dropped according to increasing ozone dosage and the more effective results were showed in treatment of irradiating UV than ozonation. But the similar TOC remove rates were showed in experiment of changing with ozone dosage during combined ozone/ultraviolet oxidation TOC remove rates were low in proportion to the remove rates of THM formation potential, it was considered that humic acid was made low molecule itself though ozonation and ozone/ultraviolet oxidation. Moreover, the high degree of remove efficiency will be get though the treatment of activated carbon of GAC treatment after combined ozone/ultravilet oxidation.

  • PDF

Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities

  • Wang, Guo-hua;Xie, Jian-ping;Li, Shou-peng;Guo, Yu-jie;Pan, Ying;Wu, Haiyan;Liu, Xin-xing
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1871-1880
    • /
    • 2016
  • Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

Effects of Alanine and Glutamine on Alcohol Oxidation and Urea Nitrogen Production in Perfused Rat Liver

  • Yim, Jungeun;Chyun, Jonghee;Cha, Youngnam
    • Nutritional Sciences
    • /
    • 제6권4호
    • /
    • pp.189-194
    • /
    • 2003
  • Most of the ethyl alcohol consumed by humans is oxidized to acetaldehyde in the liver by the cytoplasmic alcohol dehydrogenase (ADH) system. For this ADH-catalyzed oxidation of alcohol, $NAD^+$ is required as the coenzyme and $NAD^+$becomes reduced to NADH. As the $NAD^+$becomes depleted and NADH accumulates, alcohol oxidation is reduced. For continued alcohol oxidation, the accumulated NADH must be quickly reoxidized to $NAD^+$, and it is this reoxidation of NADH to $NAD^+$that is known to be the rate-limiting step in the overall oxidation rate of alcohol The reoxidation of NADH to $NAD^+$is catalyzed by lactate dehydrogenase in the cytoplasm of hepatocytes, with pyruvate being utilized as the substrate. The pyruvate may be supplied from alanine as a result of amino acid metabolism via the urea cycle. Also, glutamine is thought to help with the supply of pyruvate indirectly, and to activate the urea cycle by producing $NH_3$. Thus, in the present study, we have examined the effects of alanine and glutamine on the alcohol oxidation rate. We utilized isolated perfused liver tissue in a system where media containing alanine and glutamine was circulated. Our results showed that when alanine (5.0mM) was added to the glucose-free infusion media, the alcohol oxidation rate was increased by 130%. Furthermore, when both glutamine and alanine were added together to the infusion media, the alcohol oxidation rate increased by as much as 190%, and the rate of urea nitrogen production increased by up to 200%. The addition of glutamine (5.0mM) alone to the infusion media did not accelerate the alcohol oxidation rate. The increases in the rates of alcohol oxidation and urea nitrogen production through the addition of alanine and glutamine indicate that these amino acids have contributed to the enhanced supply of pyruvate through the urea cycle. Based on these results, it is concluded that the dietary supplementation of alanine and glutamine could contribute to increased alcohol detoxification through the urea cycle, by enhancing the supply of pyruvate and $NAD^+$to ensure accelerated rates of alcohol oxidation.

대기 중 휘발성 유기화합물의 광산화 공정 및 광촉매산화 공정의 처리효율 비교 (A Study on the Photolytic and Photocatalytic Oxidation of VOCs in Air)

  • 서정민;정창훈;최금찬
    • 한국대기환경학회지
    • /
    • 제18권2호
    • /
    • pp.139-148
    • /
    • 2002
  • Both UV Photolysis and Phtocatalytic Oxidation Processing are an emerging technology for the abatemant of Volatile Organic Compounds (VOCs) in atmospheric -pressure air streams. However, each process has some drawbacks of their own. The former is little known as an application for air pollution treatment, so it has been a rare choice in the field. Therefore we have to do more experiment and study for its application for treatment of VOCs. Although the latter has been used in the industrial fields, it still has a difficulty in decomposing high concentrations of VOCs. To solute these problems, we have been studying simultaneous application of those two technologies. We have studied the effects of background gas composition and gas temperature on the decomposition chemistry. It has shown that concentration of TCE and B.T.X., diameter of reactor, and wavelength of lamp have effects on decomposition efficiency. When using Photolysis Process only, the rates of fractional conversion of each material are found at TCE 79%, Benzene 65%, Toluene 68%, Xylene 76%. In case of Photocatalytic Oxidation Process only, the rates of fractional conversion decreased drastically above 30 ppm. When there two methods were combined, the rates of fractional conversion of each material are enhanced such as TCE 93%, Benzene 75%, Toluene 81%, Xylene 90%. Therefore, we conclude that the combination of Photolysis-Photocatalytic Oxidation process is more efficient than each individual process.

650 ℃의 10%O2+10%CO2 가스 환경에서 2.25Cr-1Mo강의 산화특성에 미치는 KCl(s)과 K2SO4(s)의 영향 (Effect of KCl(s) and K2SO4(s) on Oxidation Characteristics of the 2.25Cr-1Mo Steel in 10%O2+10%CO2 Gas Environment at 650 ℃)

  • 정광후;김성종
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.43-50
    • /
    • 2020
  • In this study, the effects of KCl(s) and K2SO4(s) on the oxidation characteristics of 2.25Cr-1Mo steel were investigated for 500 h in 10O2 + 10CO2 (vol%) gas environmen at 650 ℃. Oxidation kinetics were characterized by weight gain, oxide layer thickness, and fitted models for the experiment data were proposed. The fitted models presented considerable agreement with the experimental data. The oxide layer was analyzed using the scanning electron microscope, optical microscope, and energy dispersive X-ray spectroscopy. The oxidation kinetics of 2.25Cr-1Mo steel with KCl and K2SO4 coatings showed significantly different oxidation kinetics. KCl accelerated the oxidation rate very much and had linear oxidation behavior. In contrast, K2SO4 had no significant effect, which had parabolic kinetics. The oxide layer was commonly composed of Fe2O3, Fe3O4, and FeCr2O4 spinel. KCl strongly accelerated the oxidation rates of 2.25Cr-1Mo steel in the high-temperature oxidation environment. Conversely, K2SO4 had little effect on the oxidation rates.

The Sulfidation and Oxidation Behavior of Sputter-Deposited Nb-Al-Cr Alloys at High Temperatures

  • Habazaki, Hiroki;Yokoyama, Kazuki;Konno, Hidetaka
    • Corrosion Science and Technology
    • /
    • 제2권3호
    • /
    • pp.141-147
    • /
    • 2003
  • Sputter-deposited Nb-Al-Cr alloys. $3-5{\mu}m$ thick, have been prepared on quartz substrates as oxidation-and sulfidation-resistant materials at high temperatures. The oxidation or the alloys in the $Ar-O_2$ atmosphere of an oxygen partial pressure of 20 kPa follows approximately the parabolic rate law, thus being diffusion controlled. Their oxidation rates are almost the same as or even lower than those ofthc typical chromia-forming alloys. The multi-lavered oxide scales are formed on the ternary alloys. The outermost layer is composed of $Cr_2O_3$, which is"mainly responsible for the high oxidation'resistance of these alloys. In contrast to sputter-deposited Cr-Nb binary alloys reported previously, the inner layer is not porous. TEM observation as well as EDX analysis indicates that the innermost layer is a mixture of $Al_2O_3$ and niobium oxide. The dispersion of $Al_2O_3$ in niobium oxide may be attributable to the prevention of the formation of the porous oxide layer. The sulfidation rates of the present ternary alloys arc higher than those of the sputter-deposited Nb-AI binary alloys, but still several orders of magnitude lower than those of conventional high temperature alloys. Two-layered sulfide scales are formed, consisting of an outer $Al_2S_3$ layer containing chromium and an inner layer composed of $NbS_2$ and a small amount of $Cr_2S_3$. The presence of $Cr_2S_3$ in the inner protective $NbS_2$ layer may be attributed to the increase in the sulfidation rates.

이온플레이팅법으로 제조된 TiAlLaN계 박막의 산화속도 (Oxidation Rates of TiAlLaN Thin Films Deposited by Ion Plating)

  • 서성만;이기선;이기안
    • 한국재료학회지
    • /
    • 제14권3호
    • /
    • pp.163-167
    • /
    • 2004
  • TiAl(La)N thin films were oxidized in vacuum of about 7 Pa to reduce the oxidation of WC-Co as a substrate. The oxidation rate constants of the thin films were quantified by an assumption of parabolic oxidation. Increasing AI content significantly decreased the parabolic oxidation rate constant. A simultaneous addition of AI and La was more effective to reduce the oxidation rate. The parabolic oxidation rate constant of $Ti_{0.66}$ $Al_{0.32}$ $La_{ 0.02}$N thin film at 1273 K showed about ten times lower than that of TiN. The addition of a small amount of La with Al induced the preferential formation of dense $\alpha$ $-Al_2$$O_3$ film in oxide film, leading to the abrupt reduction of oxidation rate.

Kinetics of veratryl alcohol oxidation by lignin peroxidase and in-situ generated $H_2O_2$ in an electrochemical reactor

  • 이기범;구만복;문승현
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 추계학술발표대회 및 bio-venture fair
    • /
    • pp.524-527
    • /
    • 2000
  • An electroenzymatic system to oxidize veratryl alcohol of on electrodes with in-situ generated hydrogen peroxide was studied. We investigated hydrogen peroxide generation, current efficiency, and veratryl alcohol oxidation in the electrode system at various conditions. The reaction rates of veratryl alcohol oxidation were compared in an electrochemical, an electroenzymatic, and an usual biochemical systems to prove the concept of electroenzymatic oxidation.

  • PDF