• 제목/요약/키워드: overturning

검색결과 288건 처리시간 0.053초

Analysis of Static Stability by Modified Mathematical Model for Asymmetric Tractor-Harvester System: Changes in Lateral Overturning Angle by Movement of Center of Gravity Coordinates

  • Choi, Kyu-hong;Kim, Seong-Min;Hong, Sungha
    • Journal of Biosystems Engineering
    • /
    • 제42권3호
    • /
    • pp.127-135
    • /
    • 2017
  • Purpose: Purpose: The usability of a mathematical model modified for analysis of the static stability of an asymmetric tractor-harvester system was investigated. Method: The modified asynchronous mathematical model was validated through empirical experiments, and the effects of movements of the center of gravity (CG) coordinates on the stability against lateral overturning were analyzed through simulations. Results: Changes in the lateral overturning angle of the system were investigated when the coordinates of the CG of the system were moved within the variable range. The errors between simulation results and empirical experiments were compared, and the results were -4.7% at the left side overturning and -0.1% at the right side overturning. The asymmetric system was characterized in such a way that the right side overturning had an increase in overturning angle in the (+) variable range, while it had a decrease in overturning angle in the (-) variable range. In addition, the left side overturning showed an opposite result to that of the right side. At the declination angle (296<${\gamma}$<76), the right side overturning had an increase in the maximum overturning angle of 3.6%, in the minimum overturning angle of 20.3%, and in the mean overturning angle of 15.9%. Furthermore, at the declination angle (284<${\gamma}$<64), the left side overturning had a decrease in the maximum overturning angle of 29.2%, in the minimum overturning angle of 44%, and in a mean overturning angle of 39.7%. Conclusion: The modified mathematical model was useful for predicting the overturning angle of the asymmetric tractor-harvester system, and verified that a movement of the CG coordinates had a critical effect on its stability. In particular, the left side overturning was the most vulnerable to stability, regardless of the direction of declination angle.

Implication of the Change in Overturning Circulation to the LGM CO2 Budget

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.501-506
    • /
    • 2004
  • The observational proxy estimates suggest that the North Atlantic overturning stream function associated with the North Atlantic Deep Water (NADW) production and outflow was substantially weaker during the last glacial maximum (LGM) than that observed under present conditions. The impact of the changes in overturning circulation on the glacial carbon budget is investigated using a box model. The carbon box model reveals that the atmospheric $CO_2$ concentration is more sensitive to change in the overturning circulation of the North Atlantic than that of the Southern Ocean, especially when North Atlantic overturning becomes weaker. For example, when the strength of the North Atlantic overturning circulation is halved, the atmospheric $CO_2$ concentration is reduced by 50ppm of that associated with the accumulation of $CO_2$ in the deep ocean. This result implies that a weaker North Atlantic overturning circulation may play an important role in the lowering of LGM atmospheric $CO_2$ concentration.

차체 틸팅에 따를 전복안전도 특성 평가 (Evaluation of Overturning Safefy for a Tilting Train by Carbody Tilting)

  • 김남포;서승일;김정석
    • 한국철도학회논문집
    • /
    • 제9권2호
    • /
    • pp.145-150
    • /
    • 2006
  • In this study, overturning safety for a tilting train has been evaluated. In the tilting train, the overturning safety is one of the most important factors because the carbody inclines inward a curve during curve negotiation. Dynamic analysis considering unbalanced lateral acceleration and carbody tilting has been carried out and the overturning safety for the tilting train has been evaluated according to height of CG of carbody. From these studies, the overturning safety for the tilting train under unbalanced lateral acceleration of $2m/s^2$ was superior to the conventional one at the same running speed.

조경시공·관리에 사용되는 삼각지지 이동식 사다리의 전도 안정성 확보 대책 - EN131-Part 7 규정을 적용한 국내 삼각지지 이동식 사다리를 대상으로 - (Measures to Ensure Overturning Stability of Tripod Mobile Ladders Used in Landscape Construction and Management - On Tripod Mobile Ladders Used in Korea Subject to EN131-Part 7 -)

  • 이강현;이기열
    • 한국조경학회지
    • /
    • 제52권3호
    • /
    • pp.76-88
    • /
    • 2024
  • 이동식 사다리를 이용한 고소작업은 조경을 포함한 건설업에서 떨어짐 또는 전도 사고의 주요 원인이라고 할 수 있다. 이동식 사다리는 버팀대의 수와 지지 조건에 따라 A형과 삼각지지로 구분되며, A형과 비교하여 3개의 버팀대로만 바닥을 지지하는 삼각지지 이동식 사다리는 상대적으로 전도에 대한 불안정성이 높다고 할 수 있다. 이에 본 연구에서는 국내에서 사용되는 삼각지지 이동식 사다리의 제원과 EN131-Part 7의 전도 안정성 평가 규정을 이용하여 전도가 발생할 수 있는 모든 방향에 대해서 전도 및 저항모멘트 계산식을 유도하여 대상 사다리의 모멘트를 계산하고, 이로부터 방향별 전도 안정성을 평가하였다. 이에 따르면 방향에 따라 차이는 있지만 대부분 8단 이상에서 전도에 대해 불안정한 것으로 나타났다. 이 결과를 바탕으로 삼각지지 이동식 사다리가 전도 안정성을 확보할 수 있도록 사다리의 무게, 깊이 또는 폭과 같은 제원의 변경과 전도방지장치인 아웃트리거를 설치하여 저항모멘트를 확대할 수 있는 대책을 제안하였다. 그러나 이들 대책 중 제원을 변경하는 경우에는 증가되는 크기가 과도하여 적용성이 부족한 반면에 아웃트리거는 최소한의 펼침길이만으로도 전도 안정성을 확보할 수 있으므로 적용이 가능한 현실적인 대책이라고 할 수 있다.

Overturning Resistance of Plain Concrete Piers in OSPG Railroad Bridges

  • Rhee, In-Kyu;Park, Joo-Nam;Choi, Eun-Soo
    • International Journal of Railway
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2010
  • The steel plate-girder bridges with concrete gravity piers have possibilities of overturning by lateral inertial force which can be reproduced by sudden earthquake attack. This paper explores an overturning mechanism of existing concrete gravity pier onto the sandy soil in the event of lateral push-over load by in-situ experimental observation. The in-situ push-over experiment for pier with earth anchors between spread footing and rock beds exhibits a reasonable enhancement of ductility against overturning. In unanchored system, a flexural crack at cold joint of concrete pier is not developed because of the over-turning of the pier. This leads a global instability (rotation) of pier-footing system with relatively low stresses in pier itself. While a lateral load is persistently increased in anchored system, the successive flexural cracking failure at cold joint is observed even after the local shear failure of soil due to redistribution of stress equilibrium between soil and pier structure as long as a tensile action of anchor cable is active.

  • PDF

Rocking response of self-centring wall with viscous dampers under pulse-type excitations

  • Zhang, Lingxin;Huang, Xiaogang;Zhou, Zhen
    • Earthquakes and Structures
    • /
    • 제19권3호
    • /
    • pp.215-226
    • /
    • 2020
  • A self-centering wall (SCW) is a lateral resistant rocking system that incorporates posttensioned (PT) tendons to provide a self-centering capacity along with dampers to dissipate energy. This paper investigates the rocking responses of a SCW with base viscous dampers under a sinusoidal-type pulse considering yielding and fracture behaviour of the PT tendon. The differences in the overturning acceleration caused by different initial forces in the PT tendon are computed by the theoretical method. The exact analytical solution to the linear approximate equation of motion is also provided for slender SCWs. Finally, the effects of the ductile behaviour of PT tendons on the rocking response of a SCW are analysed. The results demonstrate that SCWs exhibit two overturning modes under pulse excitation. The overturning region with Mode 1 in the PT force cases separates the safe region of the wall into two parts: region S1 with an elastic tendon and region S2 with a fractured tendon. The minimum overturning acceleration of a SCW with an elastic-brittle tendon becomes insensitive to excitation frequency as the PT force increases. After the plastic behaviour of the PT tendon is considered, the minimum overturning acceleration of a SCW is increased significantly in the whole range of the studied wg/p.

Analysis of Static Lateral Stability Using Mathematical Simulations for 3-Axis Tractor-Baler System

  • Hong, Sungha;Lee, Kyouseung;Kang, Daein;Park, Wonyeop
    • Journal of Biosystems Engineering
    • /
    • 제42권2호
    • /
    • pp.86-97
    • /
    • 2017
  • Purpose: This study aims to evaluate the applicability of a tractor-baler system equipped with a newly developed round baler by conducting stability analyses via static-state mathematical simulations and verification experiments for the tractor equipped with a loader. Methods: The centers of gravity of the tractor and baler were calculated to analyze the transverse overturning of the system. This overturning of the system was analyzed by applying mathematical equations presented in previous research and comparing the results with those obtained by the newly developed mathematical simulation. For the case of the tractor equipped with a loader, mathematical simulation results and experimental values from verification experiments were compared and verified. Results: The center of gravity of the system became lower after the baler was attached to the tractor and the angle of transverse overturning of the system steadily increased or decreased as the deflection angle increased or decreased between $0^{\circ}$ and $180^{\circ}$ on the same gradient. In the results of the simulations performed by applying mathematical equations from previous research, right transverse overturning occurred when the tilt angle was at least $19.5^{\circ}$ and the range of deflection angles was from $82^{\circ}$ to $262^{\circ}$ in counter clockwise. Additionally, left transverse overturning also occurred at tilt angles of at least $19.5^{\circ}$ and the range of deflection angles was from $259^{\circ}$ to $79^{\circ}$ in counter clockwise. Under the $0^{\circ}$ deflection angle condition, in simulations of the tractor equipped with a loader, transverse overturning occurred at $17.9^{\circ}$, which is a 2.3% change from the results of the verification experiment ($17.5^{\circ}$). The simulations applied the center of gravity and the correlations between the tilt angles, formed by individual wheel ground contact points excluding wheel radius and hinge point height, which cannot be easily measured, for the convenient use of mathematical equations. The results indicated that both left and right transverse overturning occurred at $19.5^{\circ}$. Conclusions: The transverse overturning stability evaluation of the system, conducted via mathematical equation modeling, was stable enough to replace the mathematical equations proposed by previous researchers. The verification experiments and their results indicated that the system is workable at $12^{\circ}$, which is the tolerance limit for agricultural machines on the sloped lands in South Korea, and $15^{\circ}$, which is the tolerance limit for agricultural machines on the sloped grasslands of hay in Japan.

조경시공·관리에서 사다리 안전사고 예방을 위한 전도 안정성 평가 - 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 - (Evaluation of Overturning Stability for Preventing Safety Accidents Caused by Ladder Work in Landscape Construction and Management - For the Tripod Support Portable Ladders Used in Korea -)

  • 김은일;권윤구;이기열
    • 한국조경학회지
    • /
    • 제51권5호
    • /
    • pp.1-12
    • /
    • 2023
  • 본 연구는 조경시공 및 관리분야에서 수목관리, 전지 등과 같은 고소부위 작업을 위해 주로 사용하는 삼각지지형 이동식 사다리의 전도 안정성을 평가한 것이다. 산업현장에서 사용 빈도가 높은 이동식 사다리에 포함되는 삼각지지형 이동식 사다리는 작업 특성에 따라 바닥지지 형태가 일반적인 A형의 사면지지가 아닌 삼각지지 방식이고, 작업 높이도 이동식 사다리와 비교하여 2배 이상 높기 때문에 떨어짐과 함께 작업자의 안전을 위협하는 전도 발생 가능성이 매우 높다고 할 수 있다. 따라서, 국내에서 사용되고 있는 삼각지지형 이동식 사다리를 대상으로 관련 기준인 ANSI-ASC A14.7과 EN 131-Part 7에서 규정하고 있는 전도 안정성 평가를 기반으로 하여 작업 높이에 따른 전도모멘트와 저항모멘트를 계산할 수 있는 수식을 각각 유도하여 계산한 후, 이 값을 상호 비교하여 전도에 대한 안전율 및 전도 방향에 따른 안정성을 평가하였다. 각 기준에 따른 전도 안정성 평가 결과, EN 131-Part 7의 규정을 적용하면 후면방향 8단과 측면방향으로 6단 이상의 삼각지지형 이동식 사다리는 전도에 대해서 불안정한 것으로 평가되었으나, ANSI-ASC A14.7의 규정에 의하면 방향에 상관없이 모든 단수에서 전도에 대한 안정성을 확보하고 있는 것으로 평가되었다.

Analytical solution of seismic stability against overturning for a rock slope with water-filled tension crack

  • Zhang, Yanjun;Nian, Tingkai;Zheng, Defeng;Zheng, Lu
    • Geomechanics and Engineering
    • /
    • 제11권4호
    • /
    • pp.457-469
    • /
    • 2016
  • Steep rock slope with water-filled tension crack will happen to overturn around the toe of the slope under seismic loading. This failure type is completely different from the common toppling failure occurring in anti-dipping layered rock mass slopes with steeply dipping discontinuities. This paper presents an analytical approach to determine the seismic factor of safety against overturning for an intact rock mass slope with water-filled tension crack considering horizontal and vertical seismic coefficients. This solution is a generalized explicit expression and is derived using the moment equilibrium approach. A numerical program based on discontinuous deformation analysis (DDA) is adopted to validate the analytical results. The parametric study is carried out to adequately investigate the effect of horizontal and vertical seismic coefficients on the overall stability against overturning for a saturated rock slope under two water pressure modes. The analytical results show that vertically upward seismic inertia force or/and second water pressure distribution mode will remarkably decrease the slope stability against overturning. Finally, several representative design charts of slopes also are presented for the practical application.

고속철도 궤도패드의 최소 수직 스프링계수 결정에 관한 연구 (A Study on Determination of the Minimum Vertical Spring Stiffness of Track Pads in Korea High Speed Railway.)

  • 김정일;양신추;김연태;서사범
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.504-509
    • /
    • 2005
  • Railway noise and vibration has been recognized as major problems with the speed-up of rolling stock. As a kind of solution to these problems, the decrease of stiffness of track pad have been tried. However, in this case, overturning of rail due to lateral force should be considered because it can have effect on the safety of running train. Therefore, above two things - decrease of stiffness of track pad and overturning of rail due to lateral force - should be considered simultaneously for the appropriate determination of spring coefficient of track pad. With this viewpoint, minimum spring coefficient of track pad is estimated through the comparison between the theoretical relationship about the overturning of rail and 3-dimensional FE analysis result. Two kinds of Lateral force and wheel load are used as input loads. Extracted values from the conventional estimation formula and the Shinkansen design loads are used. It is found that the overturning of rail changes corresponding to the change of the stiffness of track pad and the ratio of lateral force to wheel load. Moreover, it is found that the analysis model can have influence on the results. Through these procedure, minimum spring coefficient of track pad is estimated.

  • PDF