• Title/Summary/Keyword: over-current

Search Result 5,914, Processing Time 0.03 seconds

The Protective Relaying Scheme of Power Transformer Using Wavelet Based Neural Networks (웨이브렛 변환을 바탕으로 한 신경회로망을 이용한 전력용 변압기 보호 계전기법)

  • Gwon, Gi-Baek;Seo, Hui-Seok;Yun, Seok-Mu;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.134-142
    • /
    • 2002
  • This paper presents a new method for the protective relaying scheme in power transformer using wavelet based neural networks. This approach is as fellows. After approximation and detail information is extracted by daub wavelet transform from differential current of power transformer, the former is used for obtaining the rate of differential currents and restrain currents, the latter used as the input of artificial neural networks to avoid the Hiss-operation in over-exciting state and magnetizing inrush state of power transformer. The simulation of EMTP with respect to different faults, inrush conditions and over-exciting conditions in power transformer have been conducted, and the results preyed that the proposed method is able to discriminate magnetizing inrush states, over-exciting stales and internal faults.

Electrical Fire Identification due to Conductor Structure Analysis of Electrical Wires (전선의 도체조직 분석에 의한 전기화재 감식)

  • Park, O-Cheol;Kim, Wang-Kon;Park, Nam-Kyu;Hong, Jin-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.615-618
    • /
    • 2003
  • To investigate the electrical fire identification due to conductor structure analysis of an electrical wire, we are studied by temperature heating test, over current test, short test and electric molten marks. And metal structure analysis of wire by short, we are found out increase in crystal grain with heating temperature. Structure of specimen at over current 300[%] occurred hardly structure formation and boundary of grain.

  • PDF

Characterisitics of the over current of Bi-2223 HTS tape (Bi-2223 고온초전도선의 과전류 통전특성)

  • Kim, Jae-Ho;Sim, Ki-Deok;Cho, Jeon-Wook;Kim, Hae-Jun;Kwag, Dong-Soon;Seong, Ki-Chul;Kim, Hae-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.284-285
    • /
    • 2005
  • Bi-2223 High-Temperature Superconducting(HTS) tape is one of the most widely used HTS tape for power application. Characteristics of the over current of HTS tape with different sheath are described. This paper presents the basic properties such as temperature and resistivity rise of the Bi-2223 HTS tape which is exposed to the over current. It is expected that results from this study can be utilized as basic data in designing superconducting power devices.

  • PDF

A fully-differential bipolar current-controlled current amplifier(CCCA) (완전-차동형 바이폴라 전류-제어 전류 증폭기(CCCA))

  • 손창훈;임동빈;차형우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.289-292
    • /
    • 2001
  • A Novel fully-differential bipolar current-controlled current amplifier(CCCA) for electrically tunable circuit design at current-mode signal processing were designed. The CCCA was consisted of fully-differential subtracter and fully-differential current gain amplifier. The simulation result shows that the CCCA has current input impedance of 0.5 Ω and a good linearity. The CCCA has 3-dB cutoff frequency of 20 MHz for the range over bias current 100$mutextrm{A}$ to 20 ㎃. The power dissipation is 3 mW.

  • PDF

On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type (유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 고찰)

  • 홍원표;김용학;전영환;이승학
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2002.02a
    • /
    • pp.285-290
    • /
    • 2002
  • Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such short circuits are increasing higher. The Maximum short circuit current of modern power system is becoming so large that circuit breaker are not expected th be able to shut down the current in the future. In order to cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for future power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element(resistor or reactor). The introduction merits of the SFCL were investigated quantitatively by RTDS/EMTDC from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparison characteristics for two type SFCL. Desired design specification and operation parameters of SFCL were also given qualitatively by the performance evaluation of the two type SFCL in the power system.

  • PDF

A Study Of The Current-Diagram Method For Calculating Induction Motor Characteristics With Adjustable Frequency (가변주파수에 있어서 유도전동기특성의 도시산정법에 관한 연구)

  • Min Ho Park
    • 전기의세계
    • /
    • v.18 no.4
    • /
    • pp.22-30
    • /
    • 1969
  • The development of the frequency convertors using semiconductors devices makes it possible to control the speed of A.C. motors easily. It is now economically feasible to provide them with power at adjustble frequency using silicon-controlled rectifier (or thyristor) inverters. In such a case, in order to operate an induction motor efficiently over a wide speed range, it must be supplied from a variable frecuency source of which frequency is adjustable over the speep range of the motor. It is desired to observe the changes in characteristics as primary current, torque-speed of induction moter etc. at any optional frequncy. Although the charactheristies can be obtained by means of the conventional methods they require very complicated precedures of calcuations. The Current Diagram Method in this paper suggests a new approach to simpler calcuations of the characteristics, using the motor constants at reference frequency. The conclusions of this study are summarized as follows: (1) The equations of stator current at adjusted frequency were derived to construct graphical chart and the current circle required for the Current Diagrm Method. (2) The radius, center of the current circle and the vector locus, the basis for calculating the characteristics, at any desired frequency could be easily determined with the aid of both the derived graphical chart and current circle at reference frequency. (3) The method was shown to be applicable to the various types of 3-phase induction motors and also dealt with its application to the split-phase, condenser motors.

  • PDF

Design of HTS power cable with fault current limiting function

  • Kim, Dongmin;Kim, Sungkyu;Cho, Jeonwook;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 2020
  • As demand for electricity in urban areas increases, it is necessary to improve electric power stability by interconnecting neighboring substations and high temperature superconductor (HTS) power cables are considered as a promising option due to its large power capacity. However, the interconnection of substations reduces grid impedance and expected fault current is over 45 kA, which exceeds the capacity of a circuit breaker in Korean grid. To reduce the fault current below 45 kA, a HTS power cable having a fault current limiting (FCL) function is considered by as a feasible solution for the interconnection of substations. In this study, a FCL HTS power cable of 600 MVA/154 kV, transmission level class, is considered to reduce the fault current from 63 kA to less than 45 kA by generating an impedance over 1 Ωwhen the fault current is induced. For the thermal design of FCL HTS power cable, a parametric study is conducted to meet a required temperature limit and impedance by modifying the cable core from usual HTS power cables which are designed to bypass the fault current through cable former. The analysis results give a minimum cable length and an area of stainless steel former to suppress the temperature of cable below a design limit.

A Cost-Effective, Single-Phase Line-Interactive UPS System that Eliminates Inrush Current Phenomenon for Transformer-Coupled Loads

  • Bukhari, Syed Sabir Hussain;Atiq, Shahid;Lipo, Thomas A.;Kwon, Byung-il
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.675-682
    • /
    • 2016
  • Sudden voltage drops and outages frequently disturb the operation of sensitive loads for domestic, commercial, and industrial use. In some cases, these events may even impair the functioning of relevant equipment. To maintain power under such conditions, a UPS system is usually installed. Once a disturbance happens at the grid side, the line-interactive UPS system takes over the load to prevent an interruption. But, due to magnetic saturation of the transformer, a significant inrush current may occur for the transformer-coupled loads during this transition. The generation of such transient currents may in turn decrease the line voltage and activates over-current protecting devices of the system. In this work, a cost-effective, line-interactive UPS system is proposed that eliminates the inrush current phenomenon associated with transformer-coupled loads. The strategy was implemented by connecting a standard current-regulated voltage source inverter (CRVSI) to the secondary winding of the load transformer. During any transient condition at the grid side, the load current is monitored and regulated to achieve either seamless compensation of the load current or complete transferal of load from grid to the inverter. Experimental results were obtained for a prototype under all possible operating conditions so as to validate the performance of the proposed topology.

A Study of the Current-Diagram Method for Calculating Induction Motor Characteristics with Adjustable Frequency (가변주파수에 있어서 유도잔동기특성의 도식산정법에 관한 연구 제3보)

  • Min Ho Park
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.20-25
    • /
    • 1969
  • The development of the frequency convertors using semiconductors devices makes it possible to control the speed of A.C. motors easily. It is now economically feasible to provide them with power at adjustable frequency using silicon-controlled rectifier (or thyristor) inverters. In such a case, in order to operate an induction motor efficiently over a wide speed range, it must be supplied from a variable frequency source of which frequency is adjustable over the speed range of the motor. It is desired to observe the changes in characteristics as primary current, torque-speed of induction motor etc. at any optional frequency. Although the characteristics can be obtained by means of the conventional methods, they require very complicated precedures of calculations. The Current Diagram Method in this paper suggests a new approach to simpler calculations of the characteristics, using the motor constants at reference frequency. The conclusions of this study are summarized as follows: 1) The equations of stator current at adjusted frequency were derived to construct graphical chart and the current circle required for the Current Diagram Method. 2) The radius, center of the current circle and the vector locus, the basis for calculating the characteristics, at any desired frequency could be easily determined with the aid of both the derived graphical chart and current circle at reference frequency. 3) The method was shown to be applicable to the various types of 3-phase induction motors and also dealt with its application to the split-phase, condenser motors.

  • PDF

Study on Measurement Method of Dielectric Recovery Voltage to analysis Dielectric Recovery Characteristic of Molded Case Circuit Breaker (저압 배선용차단기 절연회복특성 파악을 위한 절연회복전압 측정기법 연구)

  • Song, Tae-Hun;Cho, Young-Maan;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.8
    • /
    • pp.49-54
    • /
    • 2015
  • Molded Circucit Breaker(MCCB) is a most widely used device to protect loads from the over-current in low power level distribution system. When the MCCB interrupts the over-current, the arc discharge occurred between fixed contact and moving contact to create hot gas. By the Lorentz force due to arc current, the occurred arc is bent to the grids. The grids extend and cool and divide it for arc extinguish. In the majority cases, the MCCB protects loads by interrupting the over-current successfully but in some cases the re-ignition is occurred by hot-gas created during process of interruption. The re-ignition arises when the recovery voltage(RV) is more higher than the recovery strength between contacts and it leads to interruption fault. Therefore to find out the dielectric recovery characteristics of protecting device has a great importance for preventing interruption fault. In this paper, we studies measurement method of the dielectric recovery characteristics considering inherent attribute of the MCCB. To measure the dielectric recovery characteristic of MCCB, we makes an experiment circuit for applying the over-current and the randomly recovery voltage. The measurement methode to find out the dielectric recovery voltage of the MCCB was established and the result was based on experiment results.