• Title/Summary/Keyword: over current

Search Result 5,914, Processing Time 0.031 seconds

Modified Current Differential Relay for Transformer Protection Unaffected by Remanent flux (잔류자속에 무관한 변압기 보호용 수정전류차동 계전기)

  • 강용철;김은숙
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.500-506
    • /
    • 2004
  • This paper proposes a modified current differential relay for transformer protection unaffected by the remanent flux. The relay uses the same restraining current as a conventional relay, but the differential current is modified to compensate for the effects of the exciting current. To cope with the remanent flux, before saturation, the relay calculates the core-loss current and uses it to modify the measured differential current. When the core then enters saturation, the initial value of the flux is obtained by inserting the modified differential current at the start of saturation into the magnetization cure. Thereafter, the actual core flux is then derived and used in conjunction with the magnetization curve to calculate the magnetizing current. A modified differential current is then derived that compensates for the core-loss and magnetizing currents. The performance of the proposed differential relay was compared against a conventional differential relay. Results indicate that the modified relay remained stable during severe magnetic inrush and over-excitation because the exciting current was successfully compensated. This paper concludes by implementing the relay on a hardware platform based on a digital signal processor. The relay discriminates magnetic inrush and over-excitation from an internal fault and is not affected by the level of remanent flux.

Design of a Current Transducer and Over-Current Fault Detection Circuit for Power Strip Applications (멀티 콘센트용 변류기 및 과전류 검출 회로 설계)

  • Kim, Yong-Jae;Kim, Min-Seok;Park, Gyu-Sang;Kim, Jae-Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.921-926
    • /
    • 2015
  • For the over-heat protection purpose in power strip devices, over-current detection/protection circuits, such as bimetal, switching circuit, and microprocessor-based relay circuit, have been widely setup in high-end products. Most of these circuits are connected to the power line in parallel and, thus, they are sensitive to the line voltage and current distortion. Moreover, these protection circuits are often costly and, therefore, it is hard to meet the commercial requirements. A low-cost over-current detection circuit with the contactless current transducer is designed and tested in this paper. The detection circuit is galvanically isolated from the power line and, thus, less sensitive to the line voltage distortion. The experimental results show that the proposed circuit accurately operates despite of its simple structure and low-cost electronic parts.

The Characteristics of Arc Scattering and Fusing Current of Copper Wire in the Fault Process DB System of Cables in a PL Environment

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Sun-Gu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.52-58
    • /
    • 2008
  • The importance of. identifying the causes of electrical faults cannot be overstated because of the accidents caused by over-current that take place at the home, the office and electrical facilities due to misuse, poor products and system faults. It is necessary to gather objective, scientific data pertaining to electrical fault investigation in a product liability(PL) environment. To date, no database(DB) has been built concerning the accurate cause analysis of faultyfacilities. In this paper, accident hazard and arc scattering when over-current flows in copper wire was investigated. It was found that when over-current flows in a copper wire, the copper wire became heated and bent and beads were scattered around the wire with a flash. It was determinedthat the fusing current and time was related to the current rise per second. For example, when the current rise per second was largethe fusing current was higher than when the current rise per second was small, and the beads dispersed along a wide area. Fusing time, however, was shorter. The possibility of electrical fault became highest when the fusing current was higher. As the current rise per second is short, the dendrite structure is distributed in the surface of the copper wire. These experimental results can be utilized for a fault process DB system in the investigation and the prevention of electrical faults.

Measurement of Bi-2223 Tape's properties at Various Duration of the Over Current (전류인가시간에 따른 Bi-2223 테이프의 과전류 통전특성 측정)

  • 이광연;이희준;차귀수;이지광
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.257-260
    • /
    • 2003
  • Bi-2223 tape is one of the most widely used HTS tapes for power application. This paper presents the basic properties such as temperature and resistivity rise of the Bi-2223 tape which is exposed to the over current. Temperature and resistivity were measured by E-type thermocouple and voltage taps. Results of the measurement showed that rise of voltage depended on the magnitude of the over current until several times of the rated current. When the current largely exceeded the rated current, rise of voltage depended on the magnitude of the resistivity of the Ag matrix because temperature of the matrix increased to a great extend.

  • PDF

Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation (리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

A Study on the Over Current Relay Misoperation in Power System with Distributed Generations (분산전원 연계 계통에서의 과전류계전기 오동작에 관한 연구)

  • Park, Jong-Il;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1705-1710
    • /
    • 2018
  • This paper deals with an analysis of the causes of over current relay(OCR) misoperation in power system with distributed generations(DG). In general, Y-D and Y-Y-D transformer connections are used for grid interconnection of DG. According to the interconnection guideline, the neutral point on Y side should be grounded. However, these transformer connections can lead to OCR misoperation as well as over current ground relay(OCGR) misoperation. Several researches have addressed the OCGR misoperation due to the interaction between transformer connections and zero-sequence voltage of distribution system. Recently, a misoperation of OCR at the point of DG interconnection to the utility system has been also reported. With increasing the interconnections of DG, such OCR as well as OCGR misoperations are expected to increase. In this paper, PSCAD/EMTDC modeling including DG interconnection transformer was performed and various case studies was carried out for identifying the cause of OCR misoperation.

A Fast Response Integrated Current-Sensing Circuit for Peak-Current-Mode Buck Regulator

  • Ha, Jung-Woo;Park, Byeong-Ha;Kong, Bai-Sun;Chun, Jung-Hoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.810-817
    • /
    • 2014
  • An on-chip current sensor with fast response time for the peak-current-mode buck regulator is proposed. The initial operating points of the peak current sensor are determined in advance by the valley current level, which is sensed by a valley current sensor. As a result, the proposed current sensor achieves a fast response time of less than 20 ns, and a sensing accuracy of over 90%. Applying the proposed current sensor, the peak-current-mode buck regulator for the mobile application is realized with an operating frequency of 2 MHz, an output voltage of 0.8 V, a maximum load current of 500 mA, and a peak efficiency of over 83%.

The Analysis of Metallurgical Structure and Arc Properties of Copper Wire Due to Over-current (과전류에 의한 동 전선의 용단 아크 특성 및 금속조직 분석)

  • Kim, Young-Seok;Shong, Kil-Mok;Kim, Dong-Ook;Lee, Ki-Yeon;Choi, Chung-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.554-555
    • /
    • 2005
  • In this paper, we analyzed a metallurgical structure and arc properties of copper wire when the over-current flows on electric wire. From the results, The fusing current was related to the fusing time(current rising rate per second). In case of the shorter the fusing time, the fusing current was high, and the fusing time of ac type was larger than that of dc type. The copper wire was bent by the increase of current and heated, the beads were scattered around wire with a flash. We could observed the dendrite structure in 'molten wire at ac and dc current type. According as the current rising rate per second is short, the dendrite structure is distributed in surface of wire.

  • PDF

Development of Electronic Ballast for Automotive Headlight Lamp using Half Bridge Inverter (Half Bridge 인버터에 의한 자동차 헤드라이트용 전자식 안정기 개발)

  • 조계현;박종연;박재일
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.140-146
    • /
    • 2003
  • In this paper, we suggested electronic ballast with the half bridge inverter for the automotive HID lamp. The electronic ballast for the automotive HID lamp should be supplied by the low-frequency square wave avoiding the acoustic resonance. When the HID lamp is hot state, the electronic ballast should supply the sufficient current to the take over to the lamp at the re-strike ignition state for a few milli-second. We have introduced the new take-over current control method that could have control operating frequency and minimize circuits to the take over current circuits.

The characteristics analyses of deteriorated PVC insulated flexible cords by over-current (과전류에 의해 열화된 비닐코드의 특성 분석)

  • Kim, Hyang-Kon;Choi, Chung-Seog;Kim, Dong-Ook;Chung, Hun-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.489-492
    • /
    • 2003
  • In this paper, we experimented on the deterioration process of power supply cords and analyzed the heating temperature of each part of those cords. We also analyzed the surface states, metallurgical structures surface structures and compositions of the wire melted by over-current. In the results of the analyses, the covering began to be deteriorated from the inside. The heating temperature of extension cord was higher than that of plug body. The dendrite structures appeared at the melted wire. By the SEM and EDS analyses, the dendrite structure showed the growth of copper oxide. We found out the characteristics of PVC insulated flexible cords by over-current from the above experiments and analyses. These results may be useful data in the analyses of deterioration causes of power supply cords.

  • PDF